Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization
- URL: http://arxiv.org/abs/2504.02833v1
- Date: Sun, 16 Mar 2025 11:05:51 GMT
- Title: Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization
- Authors: Sangwoo Park, Stefan Vlaski, Lajos Hanzo,
- Abstract summary: We propose a smooth variant of the min-max problem based on the augmented Lagrangian.<n>The proposed algorithm scales better with the number of objectives than subgradient-based strategies.
- Score: 66.51747366239299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In multi-objective optimization, minimizing the worst objective can be preferable to minimizing the average objective, as this ensures improved fairness across objectives. Due to the non-smooth nature of the resultant min-max optimization problem, classical subgradient-based approaches typically exhibit slow convergence. Motivated by primal-dual consensus techniques in multi-agent optimization and learning, we formulate a smooth variant of the min-max problem based on the augmented Lagrangian. The resultant Exact Pareto Optimization via Augmented Lagrangian (EPO-AL) algorithm scales better with the number of objectives than subgradient-based strategies, while exhibiting lower per-iteration complexity than recent smoothing-based counterparts. We establish that every fixed-point of the proposed algorithm is both Pareto and min-max optimal under mild assumptions and demonstrate its effectiveness in numerical simulations.
Related papers
- Quantum Approximate Multi-Objective Optimization [1.2564343689544843]
Multi-objective optimization represents a compelling problem class to analyze with quantum computers.<n>In this work, we use low-depth Quantum Approximate Optimization Algorithm to approximate the optimal Pareto front of certain multi-objective weighted maximum cut problems.<n>We demonstrate its performance on an IBM Quantum computer, as well as with Matrix Product State numerical simulation, and show its potential to outperform classical approaches.
arXiv Detail & Related papers (2025-03-28T18:00:25Z) - Iterative Layerwise Training for Quantum Approximate Optimization
Algorithm [0.39945675027960637]
The capability of the quantum approximate optimization algorithm (QAOA) in solving the optimization problems has been intensively studied in recent years.
We propose the iterative layerwise optimization strategy and explore the possibility for the reduction of optimization cost in solving problems with QAOA.
arXiv Detail & Related papers (2023-09-24T05:12:48Z) - Nesterov Meets Optimism: Rate-Optimal Separable Minimax Optimization [108.35402316802765]
We propose a new first-order optimization algorithm -- AcceleratedGradient-OptimisticGradient (AG-OG) Ascent.
We show that AG-OG achieves the optimal convergence rate (up to a constant) for a variety of settings.
We extend our algorithm to extend the setting and achieve the optimal convergence rate in both bi-SC-SC and bi-C-SC settings.
arXiv Detail & Related papers (2022-10-31T17:59:29Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm.
They achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables.
arXiv Detail & Related papers (2022-08-08T11:29:55Z) - A novel multiobjective evolutionary algorithm based on decomposition and
multi-reference points strategy [14.102326122777475]
Multiobjective evolutionary algorithm based on decomposition (MOEA/D) has been regarded as a significantly promising approach for solving multiobjective optimization problems (MOPs)
We propose an improved MOEA/D algorithm by virtue of the well-known Pascoletti-Serafini scalarization method and a new strategy of multi-reference points.
arXiv Detail & Related papers (2021-10-27T02:07:08Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Meta-learning based Alternating Minimization Algorithm for Non-convex
Optimization [9.774392581946108]
We propose a novel solution for challenging non-problems of multiple variables.
Our proposed approach is able to achieve effective iterations in cases while other methods would typically fail.
arXiv Detail & Related papers (2020-09-09T10:45:00Z) - Fast Objective & Duality Gap Convergence for Non-Convex Strongly-Concave
Min-Max Problems with PL Condition [52.08417569774822]
This paper focuses on methods for solving smooth non-concave min-max problems, which have received increasing attention due to deep learning (e.g., deep AUC)
arXiv Detail & Related papers (2020-06-12T00:32:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.