Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
- URL: http://arxiv.org/abs/2008.12080v1
- Date: Thu, 27 Aug 2020 12:23:18 GMT
- Title: Identifying and Tracking Solar Magnetic Flux Elements with Deep Learning
- Authors: Haodi Jiang, Jiasheng Wang, Chang Liu, Ju Jing, Hao Liu, Jason T. L.
Wang, Haimin Wang
- Abstract summary: We propose a new deep learning method, called SolarUnet, to identify and track solar magnetic flux elements or features in observed vector magnetograms.
SolarUnet is applied to data from the 1.6 meter Goode Solar Telescope at the Big Bear Solar Observatory.
- Score: 6.659099851744079
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has drawn a lot of interest in recent years due to its
effectiveness in processing big and complex observational data gathered from
diverse instruments. Here we propose a new deep learning method, called
SolarUnet, to identify and track solar magnetic flux elements or features in
observed vector magnetograms based on the Southwest Automatic Magnetic
Identification Suite (SWAMIS). Our method consists of a data pre-processing
component that prepares training data from the SWAMIS tool, a deep learning
model implemented as a U-shaped convolutional neural network for fast and
accurate image segmentation, and a post-processing component that prepares
tracking results. SolarUnet is applied to data from the 1.6 meter Goode Solar
Telescope at the Big Bear Solar Observatory. When compared to the widely used
SWAMIS tool, SolarUnet is faster while agreeing mostly with SWAMIS on feature
size and flux distributions, and complementing SWAMIS in tracking long-lifetime
features. Thus, the proposed physics-guided deep learning-based tool can be
considered as an alternative method for solar magnetic tracking.
Related papers
- Magnetogram-to-Magnetogram: Generative Forecasting of Solar Evolution [0.0]
We introduce a novel method to predict the evolution of the solar line-of-sight (LoS) magnetogram using image-to-image translation with Denoising Diffusion Probabilistic Models (DDPMs)
Our approach combines "computer science metrics" for image quality and "physics metrics" for physical accuracy to evaluate model performance.
The results indicate that DDPMs are effective in maintaining the structural integrity, the dynamic range of solar magnetic fields, the magnetic flux and other physical features such as the size of the active regions, surpassing traditional persistence models, also in flaring situation.
arXiv Detail & Related papers (2024-07-16T12:28:10Z) - Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams [0.0]
We present a novel approach for predicting extreme solar flares using HMI intensitygrams and magnetograms.
By detecting sunspots from intensitygrams and extracting magnetic field patches from magnetograms, we train a Residual Network (ResNet) to classify extreme class flares.
Our model demonstrates high accuracy, offering a robust tool for predicting extreme solar flares and improving space weather forecasting.
arXiv Detail & Related papers (2024-05-23T16:17:16Z) - Salient Object Detection in Optical Remote Sensing Images Driven by
Transformer [69.22039680783124]
We propose a novel Global Extraction Local Exploration Network (GeleNet) for Optical Remote Sensing Images (ORSI-SOD)
Specifically, GeleNet first adopts a transformer backbone to generate four-level feature embeddings with global long-range dependencies.
Extensive experiments on three public datasets demonstrate that the proposed GeleNet outperforms relevant state-of-the-art methods.
arXiv Detail & Related papers (2023-09-15T07:14:43Z) - Solar Active Region Magnetogram Image Dataset for Studies of Space
Weather [0.0]
The dataset incorporates data from three sources and provides SDO Helioseismic and Magnetic Imager (HMI) magnetograms of solar active regions.
This dataset will be useful for image analysis or solar physics research related to magnetic structure, its evolution over time, and its relation to solar flares.
This dataset is a minimally processed, user dataset of consistently sized images of solar active regions that can serve as a benchmark dataset for solar flare prediction research.
arXiv Detail & Related papers (2023-05-16T14:44:24Z) - A Deep Learning Approach to Generating Photospheric Vector Magnetograms
of Solar Active Regions for SOHO/MDI Using SDO/HMI and BBSO Data [22.56276949415464]
We propose a new deep learning method, named MagNet, to learn from combined LOS magnetograms, Bx and By taken by SDO/HMI along with H-alpha observations.
This is the first time that deep learning has been used to generate photospheric vector magnetograms of solar active regions for SOHO/MDI.
arXiv Detail & Related papers (2022-11-04T06:21:32Z) - Learning Moving-Object Tracking with FMCW LiDAR [53.05551269151209]
We propose a learning-based moving-object tracking method utilizing our newly developed LiDAR sensor, Frequency Modulated Continuous Wave (FMCW) LiDAR.
Given the labels, we propose a contrastive learning framework, which pulls together the features from the same instance in embedding space and pushes apart the features from different instances to improve the tracking quality.
arXiv Detail & Related papers (2022-03-02T09:11:36Z) - A Machine-Learning-Ready Dataset Prepared from the Solar and
Heliospheric Observatory Mission [0.0]
We present a Python tool to generate a standard dataset from solar images.
Our tool works with all image products from both the Solar and Heliospheric Observatory (SoHO) and Solar Dynamics Observatory (SDO) missions.
arXiv Detail & Related papers (2021-08-04T21:23:29Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Transfer Learning for Motor Imagery Based Brain-Computer Interfaces: A
Complete Pipeline [54.73337667795997]
Transfer learning (TL) has been widely used in motor imagery (MI) based brain-computer interfaces (BCIs) to reduce the calibration effort for a new subject.
This paper proposes that TL could be considered in all three components (spatial filtering, feature engineering, and classification) of MI-based BCIs.
arXiv Detail & Related papers (2020-07-03T23:44:21Z) - Multilinear Compressive Learning with Prior Knowledge [106.12874293597754]
Multilinear Compressive Learning (MCL) framework combines Multilinear Compressive Sensing and Machine Learning into an end-to-end system.
Key idea behind MCL is the assumption of the existence of a tensor subspace which can capture the essential features from the signal for the downstream learning task.
In this paper, we propose a novel solution to address both of the aforementioned requirements, i.e., How to find those tensor subspaces in which the signals of interest are highly separable?
arXiv Detail & Related papers (2020-02-17T19:06:05Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.