Complexity growth of operators in the SYK model and in JT gravity
- URL: http://arxiv.org/abs/2008.12274v3
- Date: Sun, 7 Mar 2021 14:10:04 GMT
- Title: Complexity growth of operators in the SYK model and in JT gravity
- Authors: Shao-Kai Jian, Brian Swingle, and Zhuo-Yu Xian
- Abstract summary: We study partially entangled thermal states in the Sachdev-Ye-Kitaev (SYK) model and their dual description in terms of operators inserted in the interior of a black hole in Jackiw-Teitelboim gravity.
We compare a microscopic definition of complexity in the SYK model known as K-complexity to calculations using CV duality in JT gravity and find that both quantities show an exponential-to-linear growth behavior.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The concepts of operator size and computational complexity play important
roles in the study of quantum chaos and holographic duality because they help
characterize the structure of time-evolving Heisenberg operators. It is
particularly important to understand how these microscopically defined measures
of complexity are related to notions of complexity defined in terms of a dual
holographic geometry, such as complexity-volume (CV) duality. Here we study
partially entangled thermal states in the Sachdev-Ye-Kitaev (SYK) model and
their dual description in terms of operators inserted in the interior of a
black hole in Jackiw-Teitelboim (JT) gravity. We compare a microscopic
definition of complexity in the SYK model known as K-complexity to calculations
using CV duality in JT gravity and find that both quantities show an
exponential-to-linear growth behavior. We also calculate the growth of operator
size under time evolution and find connections between size and complexity.
While the notion of operator size saturates at the scrambling time, our study
suggests that complexity, which is well defined in both quantum systems and
gravity theories, can serve as a useful measure of operator evolution at both
early and late times.
Related papers
- On Complexity and Duality [0.0]
We find that non-local operators exhibit behavior that mimics the growth of their local counterparts.
Our results shed light on the intricate relationship between non-locality, complexity growth, and duality in quantum systems.
arXiv Detail & Related papers (2024-11-04T19:27:21Z) - Krylov complexity for 1-matrix quantum mechanics [0.0]
This paper investigates the notion of Krylov complexity, a measure of operator growth, within the framework of 1-matrix quantum mechanics (1-MQM)
We analyze the Lanczos coefficients derived from the correlation function, revealing their linear growth even in this integrable system.
Our findings in both ground and thermal states of 1-MQM provide new insights into the nature of complexity in quantum mechanical models.
arXiv Detail & Related papers (2024-06-28T18:00:03Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Operator growth and spread complexity in open quantum systems [0.0]
We show that the entropy of the population distribution for an operator in time is a useful way to capture the complexity of the internal information dynamics of a system.
We demonstrate its effectiveness for the Sachdev-Ye-Kitaev (SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of operator strings.
arXiv Detail & Related papers (2024-04-04T15:32:34Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Operator Complexity for Quantum Scalar Fields and Cosmological
Perturbations [0.0]
We study the complexity of the unitary evolution of quantum cosmological perturbations in de Sitter space.
The complexity of cosmological perturbations scales as the square root of the (exponentially) growing volume of de Sitter space.
arXiv Detail & Related papers (2021-10-15T20:37:36Z) - Geometry of Krylov Complexity [0.0]
We develop a geometric approach to operator growth and Krylov complexity in many-body quantum systems governed by symmetries.
We show that, in this geometry, operator growth is represented by geodesics and Krylov complexity is proportional to a volume.
We use techniques from quantum optics to study operator evolution with quantum information tools such as entanglement and Renyi entropies.
arXiv Detail & Related papers (2021-09-08T18:00:00Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Relevant OTOC operators: footprints of the classical dynamics [68.8204255655161]
The OTOC-RE theorem relates the OTOCs summed over a complete base of operators to the second Renyi entropy.
We show that the sum over a small set of relevant operators, is enough in order to obtain a very good approximation for the entropy.
In turn, this provides with an alternative natural indicator of complexity, i.e. the scaling of the number of relevant operators with time.
arXiv Detail & Related papers (2020-07-31T19:23:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.