Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method
- URL: http://arxiv.org/abs/2008.12470v1
- Date: Fri, 28 Aug 2020 03:47:49 GMT
- Title: Counting from Sky: A Large-scale Dataset for Remote Sensing Object
Counting and A Benchmark Method
- Authors: Guangshuai Gao and Qingjie Liu and Yunhong Wang
- Abstract summary: We are interested in counting dense objects from remote sensing images. Compared with object counting in a natural scene, this task is challenging in the following factors: large scale variation, complex cluttered background, and orientation arbitrariness.
To address these issues, we first construct a large-scale object counting dataset with remote sensing images, which contains four important geographic objects.
We then benchmark the dataset by designing a novel neural network that can generate a density map of an input image.
- Score: 52.182698295053264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object counting, whose aim is to estimate the number of objects from a given
image, is an important and challenging computation task. Significant efforts
have been devoted to addressing this problem and achieved great progress, yet
counting the number of ground objects from remote sensing images is barely
studied. In this paper, we are interested in counting dense objects from remote
sensing images. Compared with object counting in a natural scene, this task is
challenging in the following factors: large scale variation, complex cluttered
background, and orientation arbitrariness. More importantly, the scarcity of
data severely limits the development of research in this field. To address
these issues, we first construct a large-scale object counting dataset with
remote sensing images, which contains four important geographic objects:
buildings, crowded ships in harbors, large-vehicles and small-vehicles in
parking lots. We then benchmark the dataset by designing a novel neural network
that can generate a density map of an input image. The proposed network
consists of three parts namely attention module, scale pyramid module and
deformable convolution module to attack the aforementioned challenging factors.
Extensive experiments are performed on the proposed dataset and one crowd
counting datset, which demonstrate the challenges of the proposed dataset and
the superiority and effectiveness of our method compared with state-of-the-art
methods.
Related papers
- Local Occupancy-Enhanced Object Grasping with Multiple Triplanar Projection [24.00828999360765]
This paper addresses the challenge of robotic grasping of general objects.
The proposed model first runs by proposing a number of most likely grasp points in the scene.
Around each grasp point, a module is designed to infer any voxel in its neighborhood to be either void or occupied by some object.
The model further estimates 6-DoF grasp poses utilizing the local occupancy-enhanced object shape information.
arXiv Detail & Related papers (2024-07-22T16:22:28Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - Progressive Domain Adaptation with Contrastive Learning for Object
Detection in the Satellite Imagery [0.0]
State-of-the-art object detection methods largely fail to identify small and dense objects.
We propose a small object detection pipeline that improves the feature extraction process.
We show we can alleviate the degradation of object identification in previously unseen datasets.
arXiv Detail & Related papers (2022-09-06T15:16:35Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Scene-Aware
Ambidextrous Bin Picking via Physics-based Metaverse Synthesis [72.85526892440251]
We introduce MetaGraspNet, a large-scale photo-realistic bin picking dataset constructed via physics-based metaverse synthesis.
The proposed dataset contains 217k RGBD images across 82 different article types, with full annotations for object detection, amodal perception, keypoint detection, manipulation order and ambidextrous grasp labels for a parallel-jaw and vacuum gripper.
We also provide a real dataset consisting of over 2.3k fully annotated high-quality RGBD images, divided into 5 levels of difficulties and an unseen object set to evaluate different object and layout properties.
arXiv Detail & Related papers (2022-08-08T08:15:34Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
Spotting camouflaged objects that are visually assimilated into the background is tricky for object detection algorithms.
We aim to extract the high-resolution texture details to avoid the detail degradation that causes blurred vision in edges and boundaries.
We introduce a novel HitNet to refine the low-resolution representations by high-resolution features in an iterative feedback manner.
arXiv Detail & Related papers (2022-03-22T11:20:21Z) - FAIR1M: A Benchmark Dataset for Fine-grained Object Recognition in
High-Resolution Remote Sensing Imagery [21.9319970004788]
We propose a novel benchmark dataset with more than 1 million instances and more than 15,000 images for Fine-grAined object recognItion in high-Resolution remote sensing imagery.
All objects in the FAIR1M dataset are annotated with respect to 5 categories and 37 sub-categories by oriented bounding boxes.
arXiv Detail & Related papers (2021-03-09T17:20:15Z) - Boundary Regularized Building Footprint Extraction From Satellite Images
Using Deep Neural Network [6.371173732947292]
We propose a novel deep neural network, which enables to jointly detect building instance and regularize noisy building boundary shapes from a single satellite imagery.
Our model can accomplish multi-tasks of object localization, recognition, semantic labelling and geometric shape extraction simultaneously.
arXiv Detail & Related papers (2020-06-23T17:24:09Z) - JHU-CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method [92.15895515035795]
We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains "4,372" images with "1.51 million" annotations.
We propose a novel crowd counting network that progressively generates crowd density maps via residual error estimation.
arXiv Detail & Related papers (2020-04-07T14:59:35Z) - Counting dense objects in remote sensing images [52.182698295053264]
Estimating number of interested objects from a given image is a challenging yet important task.
In this paper, we are interested in counting dense objects from remote sensing images.
To address these issues, we first construct a large-scale object counting dataset based on remote sensing images.
We then benchmark the dataset by designing a novel neural network which can generate density map of an input image.
arXiv Detail & Related papers (2020-02-14T09:13:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.