BLOB : A Probabilistic Model for Recommendation that Combines Organic
and Bandit Signals
- URL: http://arxiv.org/abs/2008.12504v1
- Date: Fri, 28 Aug 2020 06:57:10 GMT
- Title: BLOB : A Probabilistic Model for Recommendation that Combines Organic
and Bandit Signals
- Authors: Otmane Sakhi, Stephen Bonner, David Rohde, Flavian Vasile
- Abstract summary: We propose a probabilistic approach to combine the 'or-ganic' and 'bandit' signals in order to improve the estimation of recommendation quality.
We show using extensive simulation studies that our method out-performs or matches the value of both state-of-the-art organic-based recommendation algorithms.
- Score: 12.83118601099289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common task for recommender systems is to build a pro le of the interests
of a user from items in their browsing history and later to recommend items to
the user from the same catalog. The users' behavior consists of two parts: the
sequence of items that they viewed without intervention (the organic part) and
the sequences of items recommended to them and their outcome (the bandit part).
In this paper, we propose Bayesian Latent Organic Bandit model (BLOB), a
probabilistic approach to combine the 'or-ganic' and 'bandit' signals in order
to improve the estimation of recommendation quality. The bandit signal is
valuable as it gives direct feedback of recommendation performance, but the
signal quality is very uneven, as it is highly concentrated on the
recommendations deemed optimal by the past version of the recom-mender system.
In contrast, the organic signal is typically strong and covers most items, but
is not always relevant to the recommendation task. In order to leverage the
organic signal to e ciently learn the bandit signal in a Bayesian model we
identify three fundamental types of distances, namely action-history,
action-action and history-history distances. We implement a scalable
approximation of the full model using variational auto-encoders and the local
re-paramerization trick. We show using extensive simulation studies that our
method out-performs or matches the value of both state-of-the-art organic-based
recommendation algorithms, and of bandit-based methods (both value and
policy-based) both in organic and bandit-rich environments.
Related papers
- The Nah Bandit: Modeling User Non-compliance in Recommendation Systems [2.421459418045937]
Expert with Clustering (EWC) is a hierarchical approach that incorporates feedback from both recommended and non-recommended options to accelerate user preference learning.
EWC outperforms both supervised learning and traditional contextual bandit approaches.
This work lays the foundation for future research in Nah Bandit, providing a robust framework for more effective recommendation systems.
arXiv Detail & Related papers (2024-08-15T03:01:02Z) - Managing multi-facet bias in collaborative filtering recommender systems [0.0]
Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system.
This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms.
Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases.
arXiv Detail & Related papers (2023-02-21T10:06:01Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
We propose a novel recommender system that aligns with agents' incentives while achieving myopically optimal performance.
Our framework models this incentive-aware system as a multi-agent bandit problem in two-sided markets.
Both algorithms satisfy an ex-post fairness criterion, which protects agents from over-exploitation.
arXiv Detail & Related papers (2022-11-23T22:20:12Z) - Defending Substitution-Based Profile Pollution Attacks on Sequential
Recommenders [8.828396559882954]
We propose a substitution-based adversarial attack algorithm, which modifies the input sequence by selecting certain vulnerable elements and substituting them with adversarial items.
We also design an efficient adversarial defense method called Dirichlet neighborhood sampling.
In particular, we represent selected items with one-hot encodings and perform gradient ascent on the encodings to search for the worst case linear combination of item embeddings in training.
arXiv Detail & Related papers (2022-07-19T00:19:13Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
We show how to return a set of items rigorously guaranteed to contain mostly good items.
Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate.
We evaluate our methods on the Yahoo! Learning to Rank and MSMarco datasets.
arXiv Detail & Related papers (2022-07-04T17:49:25Z) - Recommending with Recommendations [1.1602089225841632]
Recommendation systems often draw upon sensitive user information in making predictions.
We show how to address this deficiency by basing a service's recommendation engine upon recommendations from other existing services.
In our setting, the user's (potentially sensitive) information belongs to a high-dimensional latent space.
arXiv Detail & Related papers (2021-12-02T04:30:15Z) - PipAttack: Poisoning Federated Recommender Systems forManipulating Item
Promotion [58.870444954499014]
A common practice is to subsume recommender systems under the decentralized federated learning paradigm.
We present a systematic approach to backdooring federated recommender systems for targeted item promotion.
arXiv Detail & Related papers (2021-10-21T06:48:35Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z) - Sequential Recommendation with Self-Attentive Multi-Adversarial Network [101.25533520688654]
We present a Multi-Factor Generative Adversarial Network (MFGAN) for explicitly modeling the effect of context information on sequential recommendation.
Our framework is flexible to incorporate multiple kinds of factor information, and is able to trace how each factor contributes to the recommendation decision over time.
arXiv Detail & Related papers (2020-05-21T12:28:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.