Managing multi-facet bias in collaborative filtering recommender systems
- URL: http://arxiv.org/abs/2302.10575v1
- Date: Tue, 21 Feb 2023 10:06:01 GMT
- Title: Managing multi-facet bias in collaborative filtering recommender systems
- Authors: Samira Vaez Barenji, Saeed Farzi
- Abstract summary: Biased recommendations across groups of items can endanger the interests of item providers along with causing user dissatisfaction with the system.
This study aims to manage a new type of intersectional bias regarding the geographical origin and popularity of items in the output of state-of-the-art collaborative filtering recommender algorithms.
Extensive experiments on two real-world datasets of movies and books, enriched with the items' continents of production, show that the proposed algorithm strikes a reasonable balance between accuracy and both types of the mentioned biases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the extensive growth of information available online, recommender
systems play a more significant role in serving people's interests. Traditional
recommender systems mostly use an accuracy-focused approach to produce
recommendations. Today's research suggests that this single-dimension approach
can lead the system to be biased against a series of items with certain
attributes. Biased recommendations across groups of items can endanger the
interests of item providers along with causing user dissatisfaction with the
system. This study aims to manage a new type of intersectional bias regarding
the geographical origin and popularity of items in the output of
state-of-the-art collaborative filtering recommender algorithms. We introduce
an algorithm called MFAIR, a multi-facet post-processing bias mitigation
algorithm to alleviate these biases. Extensive experiments on two real-world
datasets of movies and books, enriched with the items' continents of
production, show that the proposed algorithm strikes a reasonable balance
between accuracy and both types of the mentioned biases. According to the
results, our proposed approach outperforms a well-known competitor with no or
only a slight loss of efficiency.
Related papers
- Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop [65.23044868332693]
We investigate the impact of source bias on the realm of recommender systems.
We show the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification.
We introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC.
arXiv Detail & Related papers (2024-05-28T09:34:50Z) - Be Aware of the Neighborhood Effect: Modeling Selection Bias under Interference [50.95521705711802]
Previous studies have focused on addressing selection bias to achieve unbiased learning of the prediction model.
This paper formally formulates the neighborhood effect as an interference problem from the perspective of causal inference.
We propose a novel ideal loss that can be used to deal with selection bias in the presence of neighborhood effect.
arXiv Detail & Related papers (2024-04-30T15:20:41Z) - Metrics for popularity bias in dynamic recommender systems [0.0]
Biased recommendations may lead to decisions that can potentially have adverse effects on individuals, sensitive user groups, and society.
This paper focuses on quantifying popularity bias that stems directly from the output of RecSys models.
Four metrics to quantify popularity bias in RescSys over time in dynamic setting across different sensitive user groups have been proposed.
arXiv Detail & Related papers (2023-10-12T16:15:30Z) - A Survey on Popularity Bias in Recommender Systems [5.952279576277445]
We discuss the potential reasons for popularity bias and review existing approaches to detect, mitigate and quantify popularity bias in recommender systems.
We critically discuss todays literature, where we observe that the research is almost entirely based on computational experiments and on certain assumptions regarding the practical effects of including long-tail items in the recommendations.
arXiv Detail & Related papers (2023-08-02T12:58:11Z) - Recommendation Systems with Distribution-Free Reliability Guarantees [83.80644194980042]
We show how to return a set of items rigorously guaranteed to contain mostly good items.
Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate.
We evaluate our methods on the Yahoo! Learning to Rank and MSMarco datasets.
arXiv Detail & Related papers (2022-07-04T17:49:25Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - CPFair: Personalized Consumer and Producer Fairness Re-ranking for
Recommender Systems [5.145741425164946]
We present an optimization-based re-ranking approach that seamlessly integrates fairness constraints from both the consumer and producer-side.
We demonstrate through large-scale experiments on 8 datasets that our proposed method is capable of improving both consumer and producer fairness without reducing overall recommendation quality.
arXiv Detail & Related papers (2022-04-17T20:38:02Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - A Graph-based Approach for Mitigating Multi-sided Exposure Bias in
Recommender Systems [7.3129791870997085]
We introduce FairMatch, a graph-based algorithm that improves exposure fairness for items and suppliers.
A comprehensive set of experiments on two datasets and comparison with state-of-the-art baselines show that FairMatch, while significantly improves exposure fairness and aggregate diversity, maintains an acceptable level of relevance of the recommendations.
arXiv Detail & Related papers (2021-07-07T18:01:26Z) - Fairness-Aware Explainable Recommendation over Knowledge Graphs [73.81994676695346]
We analyze different groups of users according to their level of activity, and find that bias exists in recommendation performance between different groups.
We show that inactive users may be more susceptible to receiving unsatisfactory recommendations, due to insufficient training data for the inactive users.
We propose a fairness constrained approach via re-ranking to mitigate this problem in the context of explainable recommendation over knowledge graphs.
arXiv Detail & Related papers (2020-06-03T05:04:38Z) - Contrastive Learning for Debiased Candidate Generation in Large-Scale
Recommender Systems [84.3996727203154]
We show that a popular choice of contrastive loss is equivalent to reducing the exposure bias via inverse propensity weighting.
We further improve upon CLRec and propose Multi-CLRec, for accurate multi-intention aware bias reduction.
Our methods have been successfully deployed in Taobao, where at least four-month online A/B tests and offline analyses demonstrate its substantial improvements.
arXiv Detail & Related papers (2020-05-20T08:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.