Temporal Spinwave Fabry-Perot Interferometry via Coherent Population
Trapping
- URL: http://arxiv.org/abs/2008.12562v2
- Date: Mon, 8 Feb 2021 03:15:30 GMT
- Title: Temporal Spinwave Fabry-Perot Interferometry via Coherent Population
Trapping
- Authors: Ruihuan Fang, Chengyin Han, Xunda Jiang, Yuxiang Qiu, Yuanyuan Guo,
Minhua Zhao, Jiahao Huang, Bo Lu, Chaohong Lee
- Abstract summary: We experimentally demonstrate a temporal spinwave Fabry-P'erot interferometry via double-$Lambda$ CPT of laser-cooled $87$Rb atoms.
The transmission spectrum is analytically explained by the Fabry-P'erot interferometry of temporal spinwaves.
- Score: 3.5655801623185663
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ramsey spectroscopy via coherent population trapping (CPT) is essential in
precision measurements. The conventional CPT-Ramsey fringes contain numbers of
almost identical oscillations and so that it is difficult to identify the
central fringe. Here, we experimentally demonstrate a temporal spinwave
Fabry-P\'{e}rot interferometry via double-$\Lambda$ CPT of laser-cooled
$^{87}$Rb atoms. Due to the constructive interference of temporal spinwaves,
the transmission spectrum appears as a comb of equidistant peaks in frequency
domain and thus the central Ramsey fringe can be easily identified. From the
optical Bloch equations for our five-level double-$\Lambda$ system, the
transmission spectrum is analytically explained by the Fabry-P\'{e}rot
interferometry of temporal spinwaves. Due to small amplitude difference between
the two Land\'{e} factors, each peak splits into two when the external magnetic
field is not too weak. This peak splitting can be employed to measure an
unknown magnetic field without involving magneto-sensitive transitions.
Related papers
- Multipassage Landau-Zener tunneling oscillations in transverse/longitudinal dual dressing of atomic qubits [31.874825130479174]
We investigate the time evolution of a non-resonant dressed-atom qubit in an XZ original configuration.<n>The experiments are performed in rubidium and caesium atomic magnetometers.
arXiv Detail & Related papers (2025-06-03T21:10:00Z) - Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Probing pair correlations in Fermi gases with Ramsey-Bragg interferometry [41.94295877935867]
We propose an interferometric method to probe pair correlations in a gas of spin-1/2 fermions.
The method consists of a Ramsey sequence where both spin states of the Fermi gas are set in a superposition of a state at rest and a state with a large recoil velocity.
The off-diagonal long-range order is directly reflected in the behavior of the interferometric signal for long interrogation times.
arXiv Detail & Related papers (2023-12-21T15:46:29Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Near-field diffraction of protons by a nanostructured metallic grating
under external electric field: Asymmetry and sidebands in Talbot self-imaging [0.0]
Self-imaging in near-field diffraction is a practical application of coherent manipulation of matter waves in Talbot interferometry.
In this work, near-field diffraction of protons by a nanostructured metallic grating under the influence of (a) uniform, (b) spatially modulated, and (c) temporally modulated electric fields are investigated.
arXiv Detail & Related papers (2023-04-20T17:38:21Z) - Quantum interference in the resonance fluorescence of a $J=1/2$-$J'=1/2$
atomic system: Quantum beats, nonclassicality, and non-Gaussianity [0.0]
We study theoretically quantum statistical and spectral properties of the resonance fluorescence of a single atom or system driven by a monochromatic laser field.
For a strong laser and a large Zeeman splitting the beats have mean and modulation frequencies given by the average and difference.
For small laser and Zeeman detunings, a weak to moderate laser field pumps the system partially to one of the ground states, showing slow decay in the two time correlations and a narrow peak in the quadrature spectra.
arXiv Detail & Related papers (2023-01-08T15:25:36Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - Stable Atomic Magnetometer in Parity-Time Symmetry Broken Phase [8.862042024766874]
We show that the spatial degrees of freedom of atoms could become a resource, rather than harmfulness, for high-precision measurement of weak signals.
We demonstrate that, using these spatial-motion-induced split frequencies, the spin system can serve as a stable magnetometer.
arXiv Detail & Related papers (2022-11-17T05:51:11Z) - An atom interferometer driven by a picosecond frequency comb [0.0]
We demonstrate a light-pulse atom interferometer based on the diffraction of free-falling atoms by a picosecond frequency-comb laser.
We coherently split and recombine wave packets of cold $87$Rb atoms by driving stimulated Raman transitions.
Results pave the way for extending light-pulse interferometry to transitions in other spectral regions and therefore to other species.
arXiv Detail & Related papers (2022-07-26T08:25:42Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Mirror-assisted backscattering interferometry to measure the first-order
correlation function of the light emitted by quantum scatterers [0.0]
We present a new method to obtain the first-order temporal correlation function, $g(1) (tau)$, of the light scattered by an assembly of point-like quantum scatterers.
This new method has direct application to obtain the saturated spectrum of quantum systems.
arXiv Detail & Related papers (2021-08-03T12:34:41Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.