Quantum fluctuations in the small Fabry-Perot interferometer
- URL: http://arxiv.org/abs/2212.13430v1
- Date: Tue, 27 Dec 2022 10:02:25 GMT
- Title: Quantum fluctuations in the small Fabry-Perot interferometer
- Authors: Igor E. Protsenko and Alexander V. Uskov
- Abstract summary: We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the small, of the size of the order of the wavelength,
interferometer with the main mode excited by a quantum field from a nano-LED or
a laser. The input field is detuned from the interferometer mode with, on
average, a few photons. We find the field and the photon number fluctuation
spectra inside and outside the interferometer and identify the contributions of
quantum and classical noise in the spectra. Structures of spectra are different
for the field, the photon number fluctuations inside the interferometer; for
the transmitted, and the reflected fields. We note asymmetries in spectra.
Differences in the spectra are related to the colored (white) quantum noise
inside (outside) the interferometer. We calculate the second-order time
correlation functions; they oscillate and be negative under certain conditions.
Results help the study, design, manufacture, and use small elements of quantum
optical integrated circuits, such as delay lines and optical transistors.
Related papers
- Geometric Ramsey Interferometry with a Tripod Scheme [0.0]
Ramsey interferometry is a key technique for precision spectroscopy and to probe the coherence of quantum systems.
Here, we explore a different type of Ramsey interferometer where we perform quantum state manipulations by geometrical means.
This study opens the door for more robust interferometers operating on multiple input-output ports.
arXiv Detail & Related papers (2023-09-18T22:53:15Z) - Complete spectral characterization of biphotons by simultaneously
determining its frequency sum and difference in a single quantum
interferometer [0.0]
We propose a novel quantum interferometer in which the NOON state interferometer (NOONI) is combined with the Hong-Ou-Mandel interferometer (HOMI)
It can simultaneously obtain the spectral correlation information of biphotons in both frequency sum and difference.
arXiv Detail & Related papers (2023-05-23T06:40:10Z) - Single photon optical bistability [55.2480439325792]
We investigate the bistability in a small Fabry-Perot interferometer (FPI) with the optical wavelength size cavity, the nonlinear Kerr medium and only a few photons, on average, excited by the external quantum field.
Multiple stationary states of the FPI cavity field with different spectra are possible at realistic conditions, for example, in the FPI with the photonic crystal cavity and the semiconductor-doped glass nonlinear medium.
arXiv Detail & Related papers (2023-04-15T10:44:51Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Interferometric-Spectroscopy With Quantum-Light; Revealing
Out-of-Time-Ordering Correlators [0.0]
Interferometric elements can induce constructive or destructive contributions of matter.
quantum response functions include out-of-time-ordering matter correlators (OTOC)
OTOC appear in quantum-informatics studies in other fields, including black holes, high energy, and condensed matter physics.
arXiv Detail & Related papers (2021-04-13T09:01:48Z) - Tailored optical properties of atomic medium by a narrow bandwidth
frequency comb [0.3058685580689604]
The quantum interference assisted enhanced optical activity due to the emergence of a steady-state atomic polarization is investigated.
The Rubidium atoms in an antirelaxation coated cell provide a suitable platform to address the phenomena at multiple Larmors frequencies.
arXiv Detail & Related papers (2021-03-16T05:42:53Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Quantum Entangled Interferometers [0.348097307252416]
A new type of quantum entangled interferometer was recently realized that employs parametric amplifiers as the wave splitting and recombination elements.
The quantum entanglement stems from the parametric amplifiers, which produce quantum correlated fields for probing the phase change signal in the interferometer.
arXiv Detail & Related papers (2020-04-26T20:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.