論文の概要: Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction
- arxiv url: http://arxiv.org/abs/2008.12709v2
- Date: Sun, 6 Dec 2020 11:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 02:13:20.332844
- Title: Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction
- Title(参考訳): Canonical 3D Deformer Maps: 弱教師付きカテゴリ再構成のためのパラメトリックおよび非パラメトリックの統一
- Authors: David Novotny, Roman Shapovalov, Andrea Vedaldi
- Abstract要約: 独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
- 参考スコア(独自算出の注目度): 79.98689027127855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose the Canonical 3D Deformer Map, a new representation of the 3D
shape of common object categories that can be learned from a collection of 2D
images of independent objects. Our method builds in a novel way on concepts
from parametric deformation models, non-parametric 3D reconstruction, and
canonical embeddings, combining their individual advantages. In particular, it
learns to associate each image pixel with a deformation model of the
corresponding 3D object point which is canonical, i.e. intrinsic to the
identity of the point and shared across objects of the category. The result is
a method that, given only sparse 2D supervision at training time, can, at test
time, reconstruct the 3D shape and texture of objects from single views, while
establishing meaningful dense correspondences between object instances. It also
achieves state-of-the-art results in dense 3D reconstruction on public
in-the-wild datasets of faces, cars, and birds.
- Abstract(参考訳): 独立オブジェクトの2次元画像の集合から学習可能な共通オブジェクトカテゴリの3次元形状の新たな表現であるCanonical 3D Deformer Mapを提案する。
提案手法は, パラメトリックな変形モデル, 非パラメトリックな3次元再構成, 標準埋め込みの概念から, 個々の利点を組み合わせた新しい手法で構築する。
特に、各画像画素を対応する3次元オブジェクトポイントの変形モデル、すなわち、その点の同一性に固有の、カテゴリのオブジェクト間で共有される変形モデルに関連付けることを学習する。
その結果、訓練時にわずか2Dの監督しか行わず、単一のビューからオブジェクトの3D形状とテクスチャを再構築し、オブジェクトインスタンス間の意味のある密接な対応を確立することができる。
また、顔、車、鳥の野生のデータセットを3Dで再現する、最先端の成果も達成している。
関連論文リスト
- LIST: Learning Implicitly from Spatial Transformers for Single-View 3D
Reconstruction [5.107705550575662]
Listは、局所的およびグローバルな画像特徴を活用して、単一の画像から3Dオブジェクトの幾何学的および位相的構造を再構築する、新しいニューラルネットワークである。
合成画像と実世界の画像から3Dオブジェクトを再構成する際のモデルの有用性を示す。
論文 参考訳(メタデータ) (2023-07-23T01:01:27Z) - 3D Surface Reconstruction in the Wild by Deforming Shape Priors from
Synthetic Data [24.97027425606138]
1枚の画像から被写体の3次元表面を再構築することは難しい問題である。
本稿では,1枚の画像から3次元合成とオブジェクトポーズ推定を行う新しい手法を提案する。
提案手法は,複数の実世界のデータセットにまたがって,最先端の再構築性能を実現する。
論文 参考訳(メタデータ) (2023-02-24T20:37:27Z) - Topologically-Aware Deformation Fields for Single-View 3D Reconstruction [30.738926104317514]
本稿では,非整合なカテゴリ固有の画像収集から3次元オブジェクト形状と密接なオブジェクト対応を学習するための新しいフレームワークを提案する。
3次元形状は、カテゴリー固有符号距離場への変形として暗黙的に生成される。
TARSと呼ばれる我々の手法は、いくつかのデータセット上で最先端の再構築忠実性を実現する。
論文 参考訳(メタデータ) (2022-05-12T17:59:59Z) - ConDor: Self-Supervised Canonicalization of 3D Pose for Partial Shapes [55.689763519293464]
ConDorは、完全および部分的な3次元点雲の3次元配向と位置を正準化することを学ぶ自己教師型手法である。
推測中,本手法は任意のポーズで完全あるいは部分的な3次元点の雲を抽出し,同変正則のポーズを出力する。
論文 参考訳(メタデータ) (2022-01-19T18:57:21Z) - End-to-End Learning of Multi-category 3D Pose and Shape Estimation [128.881857704338]
本稿では,画像から2次元キーポイントを同時に検出し,それらを3次元に引き上げるエンド・ツー・エンド手法を提案する。
提案手法は2次元キーポイントアノテーションからのみ2次元検出と3次元リフトを学習する。
画像から3D学習へのエンドツーエンド化に加えて,1つのニューラルネットワークを用いて複数のカテゴリからのオブジェクトも処理する。
論文 参考訳(メタデータ) (2021-12-19T17:10:40Z) - DensePose 3D: Lifting Canonical Surface Maps of Articulated Objects to
the Third Dimension [71.71234436165255]
DensePose 3Dは2次元画像アノテーションのみから弱い教師付きで再構築を学習できる手法である。
3Dスキャンを必要としないため、DensePose 3Dは異なる動物種などの幅広いカテゴリーの学習に利用できる。
我々は,人間と動物のカテゴリーの合成データと実データの両方をベースラインとして,最先端の非剛体構造と比較し,顕著な改善を示した。
論文 参考訳(メタデータ) (2021-08-31T18:33:55Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
本研究では,1枚の画像から3次元空間における物体の変動を再現する微粒な物体認識のための新しいフレームワークを提案する。
我々は,物体を3次元形状とその外観の合成として表現し,カメラ視点の影響を排除した。
深部表現に3次元形状と外観を併用することにより,物体の識別表現を学習する。
論文 参考訳(メタデータ) (2021-08-10T12:19:34Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
単一のRGB画像から複数の3Dオブジェクトを検出し再構成する方法を提案する。
キーポイント検出器は、オブジェクトを中心点としてローカライズし、9-DoF境界ボックスや3D形状を含む全てのオブジェクト特性を直接予測する。
提示されたアプローチは、軽量な再構築を単一ステージで実行し、リアルタイム能力を持ち、完全に微分可能で、エンドツーエンドのトレーナーブルである。
論文 参考訳(メタデータ) (2020-12-21T18:52:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。