Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization
- URL: http://arxiv.org/abs/2008.12839v1
- Date: Fri, 28 Aug 2020 20:39:51 GMT
- Title: Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization
- Authors: Prithvijit Chattopadhyay, Yogesh Balaji, Judy Hoffman
- Abstract summary: We introduce Domain-specific Masks for Generalization, a model for improving both in-domain and out-of-domain generalization performance.
For domain generalization, the goal is to learn from a set of source domains to produce a single model that will best generalize to an unseen target domain.
We demonstrate competitive performance compared to naive baselines and state-of-the-art methods on both PACS and DomainNet.
- Score: 27.338573739304604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Domain-specific Masks for Generalization, a model for improving
both in-domain and out-of-domain generalization performance. For domain
generalization, the goal is to learn from a set of source domains to produce a
single model that will best generalize to an unseen target domain. As such,
many prior approaches focus on learning representations which persist across
all source domains with the assumption that these domain agnostic
representations will generalize well. However, often individual domains contain
characteristics which are unique and when leveraged can significantly aid
in-domain recognition performance. To produce a model which best generalizes to
both seen and unseen domains, we propose learning domain specific masks. The
masks are encouraged to learn a balance of domain-invariant and domain-specific
features, thus enabling a model which can benefit from the predictive power of
specialized features while retaining the universal applicability of
domain-invariant features. We demonstrate competitive performance compared to
naive baselines and state-of-the-art methods on both PACS and DomainNet.
Related papers
- Domain Generalization via Causal Adjustment for Cross-Domain Sentiment
Analysis [59.73582306457387]
We focus on the problem of domain generalization for cross-domain sentiment analysis.
We propose a backdoor adjustment-based causal model to disentangle the domain-specific and domain-invariant representations.
A series of experiments show the great performance and robustness of our model.
arXiv Detail & Related papers (2024-02-22T13:26:56Z) - Adaptive Mixture of Experts Learning for Generalizable Face
Anti-Spoofing [37.75738807247752]
Face anti-spoofing approaches based on domain generalization (DG) have drawn growing attention.
Existing DG-based FAS approaches always capture the domain-invariant features for generalizing on the various unseen domains.
We propose an Adaptive Mixture of Experts Learning framework, which exploits the domain-specific information to adaptively establish the link among the seen source domains and unseen target domains.
arXiv Detail & Related papers (2022-07-20T13:02:51Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
Domain Generalization (DG) aims to train a model, from multiple observed source domains, in order to perform well on unseen target domains.
Prior DG approaches have focused on extracting domain-invariant information across sources to generalize on target domains.
We propose meta-Domain Specific-Domain Invariant (mD) - a novel theoretically sound framework.
arXiv Detail & Related papers (2021-10-18T15:42:39Z) - Discriminative Domain-Invariant Adversarial Network for Deep Domain
Generalization [33.84004077585957]
We propose a discriminative domain-invariant adversarial network (DDIAN) for domain generalization.
DDIAN achieves better prediction on unseen target data during training compared to state-of-the-art domain generalization approaches.
arXiv Detail & Related papers (2021-08-20T04:24:12Z) - Context-Conditional Adaptation for Recognizing Unseen Classes in Unseen
Domains [48.17225008334873]
We propose a feature generative framework integrated with a COntext COnditional Adaptive (COCOA) Batch-Normalization.
The generated visual features better capture the underlying data distribution enabling us to generalize to unseen classes and domains at test-time.
We thoroughly evaluate and analyse our approach on established large-scale benchmark - DomainNet.
arXiv Detail & Related papers (2021-07-15T17:51:16Z) - Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification [81.30327016286009]
We propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
arXiv Detail & Related papers (2021-05-07T02:54:55Z) - Open Domain Generalization with Domain-Augmented Meta-Learning [83.59952915761141]
We study a novel and practical problem of Open Domain Generalization (OpenDG)
We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations.
Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
arXiv Detail & Related papers (2021-04-08T09:12:24Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains.
We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks.
arXiv Detail & Related papers (2020-11-25T12:02:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.