Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification
- URL: http://arxiv.org/abs/2105.03042v2
- Date: Tue, 11 May 2021 02:12:15 GMT
- Title: Adaptive Domain-Specific Normalization for Generalizable Person
Re-Identification
- Authors: Jiawei Liu, Zhipeng Huang, Kecheng Zheng, Dong Liu, Xiaoyan Sun,
Zheng-Jun Zha
- Abstract summary: We propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
In this work, we propose a novel adaptive domain-specific normalization approach (AdsNorm) for generalizable person Re-ID.
- Score: 81.30327016286009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although existing person re-identification (Re-ID) methods have shown
impressive accuracy, most of them usually suffer from poor generalization on
unseen target domain. Thus, generalizable person Re-ID has recently drawn
increasing attention, which trains a model on source domains that generalizes
well on unseen target domain without model updating. In this work, we propose a
novel adaptive domain-specific normalization approach (AdsNorm) for
generalizable person Re-ID. It describes unseen target domain as a combination
of the known source ones, and explicitly learns domain-specific representation
with target distribution to improve the model's generalization by a
meta-learning pipeline. Specifically, AdsNorm utilizes batch normalization
layers to collect individual source domains' characteristics, and maps source
domains into a shared latent space by using these characteristics, where the
domain relevance is measured by a distance function of different
domain-specific normalization statistics and features. At the testing stage,
AdsNorm projects images from unseen target domain into the same latent space,
and adaptively integrates the domain-specific features carrying the source
distributions by domain relevance for learning more generalizable aggregated
representation on unseen target domain. Considering that target domain is
unavailable during training, a meta-learning algorithm combined with a
customized relation loss is proposed to optimize an effective and efficient
ensemble model. Extensive experiments demonstrate that AdsNorm outperforms the
state-of-the-art methods. The code is available at:
https://github.com/hzphzp/AdsNorm.
Related papers
- Cross-Domain Ensemble Distillation for Domain Generalization [17.575016642108253]
We propose a simple yet effective method for domain generalization, named cross-domain ensemble distillation (XDED)
Our method generates an ensemble of the output logits from training data with the same label but from different domains and then penalizes each output for the mismatch with the ensemble.
We show that models learned by our method are robust against adversarial attacks and image corruptions.
arXiv Detail & Related papers (2022-11-25T12:32:36Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - META: Mimicking Embedding via oThers' Aggregation for Generalizable
Person Re-identification [68.39849081353704]
Domain generalizable (DG) person re-identification (ReID) aims to test across unseen domains without access to the target domain data at training time.
This paper presents a new approach called Mimicking Embedding via oThers' Aggregation (META) for DG ReID.
arXiv Detail & Related papers (2021-12-16T08:06:50Z) - TAL: Two-stream Adaptive Learning for Generalizable Person
Re-identification [115.31432027711202]
We argue that both domain-specific and domain-invariant features are crucial for improving the generalization ability of re-id models.
We name two-stream adaptive learning (TAL) to simultaneously model these two kinds of information.
Our framework can be applied to both single-source and multi-source domain generalization tasks.
arXiv Detail & Related papers (2021-11-29T01:27:42Z) - Exploiting Domain-Specific Features to Enhance Domain Generalization [10.774902700296249]
Domain Generalization (DG) aims to train a model, from multiple observed source domains, in order to perform well on unseen target domains.
Prior DG approaches have focused on extracting domain-invariant information across sources to generalize on target domains.
We propose meta-Domain Specific-Domain Invariant (mD) - a novel theoretically sound framework.
arXiv Detail & Related papers (2021-10-18T15:42:39Z) - Domain-Class Correlation Decomposition for Generalizable Person
Re-Identification [34.813965300584776]
In person re-identification, the domain and class are correlated.
We show that domain adversarial learning will lose certain information about class due to this domain-class correlation.
Our model outperforms the state-of-the-art methods on the large-scale domain generalization Re-ID benchmark.
arXiv Detail & Related papers (2021-06-29T09:45:03Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching.
One challenge is how to generate target domain samples with reliable labels for training.
We propose a Disentanglement-based Cross-Domain Feature Augmentation strategy.
arXiv Detail & Related papers (2021-03-25T15:28:41Z) - Batch Normalization Embeddings for Deep Domain Generalization [50.51405390150066]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains.
We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks.
arXiv Detail & Related papers (2020-11-25T12:02:57Z) - Learning to Balance Specificity and Invariance for In and Out of Domain
Generalization [27.338573739304604]
We introduce Domain-specific Masks for Generalization, a model for improving both in-domain and out-of-domain generalization performance.
For domain generalization, the goal is to learn from a set of source domains to produce a single model that will best generalize to an unseen target domain.
We demonstrate competitive performance compared to naive baselines and state-of-the-art methods on both PACS and DomainNet.
arXiv Detail & Related papers (2020-08-28T20:39:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.