Locally induced Gaussian processes for large-scale simulation
experiments
- URL: http://arxiv.org/abs/2008.12857v2
- Date: Wed, 3 Feb 2021 20:57:43 GMT
- Title: Locally induced Gaussian processes for large-scale simulation
experiments
- Authors: D. Austin Cole, Ryan Christianson, Robert B. Gramacy
- Abstract summary: We show how placement of inducing points and their multitude can be thwarted by pathologies.
Our proposed methodology hybridizes global inducing point and data subset-based local GP approximation.
We show that local inducing points extend their global and data-subset component parts on the accuracy--computational efficiency frontier.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian processes (GPs) serve as flexible surrogates for complex surfaces,
but buckle under the cubic cost of matrix decompositions with big training data
sizes. Geospatial and machine learning communities suggest pseudo-inputs, or
inducing points, as one strategy to obtain an approximation easing that
computational burden. However, we show how placement of inducing points and
their multitude can be thwarted by pathologies, especially in large-scale
dynamic response surface modeling tasks. As remedy, we suggest porting the
inducing point idea, which is usually applied globally, over to a more local
context where selection is both easier and faster. In this way, our proposed
methodology hybridizes global inducing point and data subset-based local GP
approximation. A cascade of strategies for planning the selection of local
inducing points is provided, and comparisons are drawn to related methodology
with emphasis on computer surrogate modeling applications. We show that local
inducing points extend their global and data-subset component parts on the
accuracy--computational efficiency frontier. Illustrative examples are provided
on benchmark data and a large-scale real-simulation satellite drag
interpolation problem.
Related papers
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Multi-Resolution Planar Region Extraction for Uneven Terrains [6.482137641059034]
This paper studies the problem of extracting planar regions in uneven terrains from unordered point cloud measurements.
We propose a multi-resolution planar region extraction strategy that balances the accuracy in boundaries and computational efficiency.
arXiv Detail & Related papers (2023-11-21T12:17:51Z) - A Global-Local Approximation Framework for Large-Scale Gaussian Process
Modeling [0.0]
We propose a novel framework for large-scale Gaussian process (GP) modeling.
We employ a combined global-local approach in building the approximation.
The performance of our framework, which we refer to as TwinGP, is on par or better than the state-of-the-art GP modeling methods.
arXiv Detail & Related papers (2023-05-17T12:19:59Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Lightweight Object-level Topological Semantic Mapping and Long-term
Global Localization based on Graph Matching [19.706907816202946]
We present a novel lightweight object-level mapping and localization method with high accuracy and robustness.
We use object-level features with both semantic and geometric information to model landmarks in the environment.
Based on the proposed map, the robust localization is achieved by constructing a novel local semantic scene graph descriptor.
arXiv Detail & Related papers (2022-01-16T05:47:07Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Local approximate Gaussian process regression for data-driven
constitutive laws: Development and comparison with neural networks [0.0]
We show how to use local approximate process regression to predict stress outputs at particular strain space locations.
A modified Newton-Raphson approach is proposed to accommodate for the local nature of the laGPR approximation when solving the global structural problem in a FE setting.
arXiv Detail & Related papers (2021-05-07T14:49:28Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.