論文の概要: Loss convergence in a causal Bayesian neural network of retail firm
performance
- arxiv url: http://arxiv.org/abs/2008.13038v1
- Date: Sat, 29 Aug 2020 19:16:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 17:03:35.474494
- Title: Loss convergence in a causal Bayesian neural network of retail firm
performance
- Title(参考訳): 小売業業績の因果ベイズ型ニューラルネットワークにおける損失収束
- Authors: F. Trevor Rogers
- Abstract要約: 我々は因果ベイズニューラルネットワークとして有向非巡回グラフを実装した。
ニューラルネットワークの収束は、最も弱いSEMパスを持つノードを除去することで改善される。
バダムの出力における摂動重量の結果は決定的ではない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the empirical results from the structural equation model (SEM)
published in the paper Assortment Planning for Retail Buying, Retail Store
Operations, and Firm Performance [1] by implementing the directed acyclic graph
as a causal Bayesian neural network. Neural network convergence is shown to
improve with the removal of the node with the weakest SEM path when variational
inference is provided by perturbing weights with Flipout layers, while results
from perturbing weights at the output with the Vadam optimizer are
inconclusive.
- Abstract(参考訳): 本稿では,本論文で公表されている構造方程式モデル(SEM)から,有向非巡回グラフを因果ベイズニューラルネットワークとして実装することにより,店舗購入・小売店運営・企業業績の配分計画 [1] から経験的結果を拡張する。
ニューラルネットワークの収束性は、フリップアウト層で重みを摂動することで変動推論が提供されるとき、最も弱いSEM経路を持つノードの除去により改善され、バダムオプティマイザで出力された重みを摂動した結果は不確定である。
関連論文リスト
- Concurrent Training and Layer Pruning of Deep Neural Networks [0.0]
トレーニングの初期段階において、ニューラルネットワークの無関係な層を特定し、排除できるアルゴリズムを提案する。
本研究では,非線形区間を切断した後にネットワークを流れる情報の流れを,非線形ネットワーク区間の周囲の残差接続を用いた構造を用いる。
論文 参考訳(メタデータ) (2024-06-06T23:19:57Z) - Random Linear Projections Loss for Hyperplane-Based Optimization in Neural Networks [22.348887008547653]
この研究はRandom Linear Projections (RLP)損失を導入し、これはデータ内の幾何学的関係を利用してトレーニング効率を向上させる新しいアプローチである。
ベンチマークデータセットと合成例を用いて実施した経験的評価では、従来の損失関数でトレーニングされたニューラルネットワークは、従来の損失関数でトレーニングされたニューラルネットワークよりも優れていたことが示されている。
論文 参考訳(メタデータ) (2023-11-21T05:22:39Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Spike-and-slab shrinkage priors for structurally sparse Bayesian neural networks [0.16385815610837165]
スパースディープラーニングは、基礎となるターゲット関数のスパース表現を復元することで、課題に対処する。
構造化された空間によって圧縮されたディープニューラルアーキテクチャは、低レイテンシ推論、データスループットの向上、エネルギー消費の削減を提供する。
本研究では, (i) Spike-and-Slab Group Lasso (SS-GL) と (ii) Spike-and-Slab Group Horseshoe (SS-GHS) を併用した過剰ノードを誘発する構造的疎いベイズニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T17:14:18Z) - Binarizing Sparse Convolutional Networks for Efficient Point Cloud
Analysis [93.55896765176414]
我々は,効率的な点群解析のためのBSC-Netと呼ばれるバイナリスパース畳み込みネットワークを提案する。
我々は,移動したスパース畳み込みにおけるサイトマッチングに最適なオプションを見つけるために,異なる検索戦略を採用している。
我々のBSC-Netは、我々の厳格なベースラインを大幅に改善し、最先端のネットワーク双対化手法より優れています。
論文 参考訳(メタデータ) (2023-03-27T13:47:06Z) - RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional
Network [102.27090022283208]
グラフ畳み込みネットワーク(GCN)は多くの現実世界のアプリケーションにおいて重要な役割を担っている。
GCNはしばしばノードの次数に対する性能の相違を示し、結果として低次ノードの予測精度が悪化する。
我々は、Rawlsian差分原理の観点から、GCNの次数関連性能格差を緩和する問題を定式化する。
論文 参考訳(メタデータ) (2022-02-28T05:07:57Z) - Extended Unconstrained Features Model for Exploring Deep Neural Collapse [59.59039125375527]
近年、ディープニューラルネットワークで「神経崩壊」(NC)と呼ばれる現象が経験的に観察されている。
最近の論文は、単純化された「制約なし特徴モデル」を最適化する際に、この構造を持つ最小化器が出現することを示している。
本稿では, 正規化MSE損失に対するUDFについて検討し, クロスエントロピーの場合よりも最小化器の特徴がより構造化可能であることを示す。
論文 参考訳(メタデータ) (2022-02-16T14:17:37Z) - Deep Neural Networks and PIDE discretizations [2.4063592468412276]
畳み込みニューラルネットワーク(CNN)の安定性と視野問題に対処するニューラルネットワークを提案する。
本稿では,大域重み付きラプラス作用素,分数ラプラス作用素,分数逆ラプラス作用素に関連する積分型空間非局所作用素を提案する。
自律運転における画像分類データセットとセマンティックセグメンテーションタスクのベンチマーク上で,提案したニューラルネットワークの有効性を検証した。
論文 参考訳(メタデータ) (2021-08-05T08:03:01Z) - Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing
its Gradient Estimator Bias [62.43908463620527]
実際には、EPはMNISTよりも難しい視覚タスクにスケールしない。
我々は、有限なヌーディングの使用に固有のEPの勾配推定のバイアスがこの現象に責任があることを示しています。
これらの結果は、EPをディープニューラルネットワークにおける誤差勾配を計算するスケーラブルなアプローチとして強調し、ハードウェア実装を動機付けている。
論文 参考訳(メタデータ) (2021-01-14T10:23:40Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z) - Regularizing Semi-supervised Graph Convolutional Networks with a
Manifold Smoothness Loss [12.948899990826426]
グラフ構造に関して定義された教師なし多様体の滑らかさ損失を提案し、これは正規化として損失関数に追加することができる。
我々は,多層パーセプトロンおよび既存のグラフネットワークの実験を行い,提案した損失を追加することにより,連続的に性能を向上させることを示す。
論文 参考訳(メタデータ) (2020-02-11T08:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。