Deep Learning Techniques for Geospatial Data Analysis
- URL: http://arxiv.org/abs/2008.13146v1
- Date: Sun, 30 Aug 2020 11:51:10 GMT
- Title: Deep Learning Techniques for Geospatial Data Analysis
- Authors: Arvind W. Kiwelekar, Geetanjali S. Mahamunkar, Laxman D. Netak, Valmik
B Nikam
- Abstract summary: Consumer electronic devices are continuously generating a vast amount of location enriched data called geospatial data.
In recent times, many useful civilian applications have been designed and deployed around such geospatial data.
Recent advances in the field of deep learning techniques showed that Neural Network-based techniques outperform conventional machine learning techniques.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consumer electronic devices such as mobile handsets, goods tagged with RFID
labels, location and position sensors are continuously generating a vast amount
of location enriched data called geospatial data. Conventionally such
geospatial data is used for military applications. In recent times, many useful
civilian applications have been designed and deployed around such geospatial
data. For example, a recommendation system to suggest restaurants or places of
attraction to a tourist visiting a particular locality. At the same time, civic
bodies are harnessing geospatial data generated through remote sensing devices
to provide better services to citizens such as traffic monitoring, pothole
identification, and weather reporting. Typically such applications are
leveraged upon non-hierarchical machine learning techniques such as Naive-Bayes
Classifiers, Support Vector Machines, and decision trees. Recent advances in
the field of deep-learning showed that Neural Network-based techniques
outperform conventional techniques and provide effective solutions for many
geospatial data analysis tasks such as object recognition, image
classification, and scene understanding. The chapter presents a survey on the
current state of the applications of deep learning techniques for analyzing
geospatial data.
The chapter is organized as below: (i) A brief overview of deep learning
algorithms. (ii)Geospatial Analysis: a Data Science Perspective (iii)
Deep-learning techniques for Remote Sensing data analytics tasks (iv)
Deep-learning techniques for GPS data analytics(iv) Deep-learning techniques
for RFID data analytics.
Related papers
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
Underwater object detection (UOD) aims to identify and localise objects in underwater images or videos.
In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD.
arXiv Detail & Related papers (2024-10-08T00:25:33Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - AutoGeoLabel: Automated Label Generation for Geospatial Machine Learning [69.47585818994959]
We evaluate a big data processing pipeline to auto-generate labels for remote sensing data.
We utilize the big geo-data platform IBM PAIRS to dynamically generate such labels in dense urban areas.
arXiv Detail & Related papers (2022-01-31T20:02:22Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
Both politics and pandemics have recently provided ample motivation for the development of machine learning-enabled disinformation (a.k.a. fake news) detection algorithms.
Existing literature has focused primarily on the fully-automated case, but the resulting techniques cannot reliably detect disinformation on the varied topics, sources, and time scales required for military applications.
By leveraging an already-available analyst as a human-in-the-loop, canonical machine learning techniques of sentiment analysis, aspect-based sentiment analysis, and stance detection become plausible methods to use for a partially-automated disinformation detection system.
arXiv Detail & Related papers (2021-11-09T13:30:34Z) - Leveraging Domain Adaptation for Low-Resource Geospatial Machine
Learning [0.0]
Many labeled geospatial datasets are specific to certain regions, instruments, or extreme weather events.
We investigate the application of modern domain-adaptation to multiple proposed geospatial benchmarks.
arXiv Detail & Related papers (2021-07-11T06:47:20Z) - Deep Learning for Surface Wave Identification in Distributed Acoustic
Sensing Data [1.7237878022600697]
We present a highly scalable and efficient approach to process real, complex DAS data.
Deep supervised learning is used to identify "useful" coherent surface waves generated by anthropogenic activity.
Our method provides interpretable patterns describing the interaction of ground-based human activities with the buried sensors.
arXiv Detail & Related papers (2020-10-15T15:53:03Z) - Learning and Recognizing Archeological Features from LiDAR Data [8.135393502095909]
We present a remote sensing pipeline that processes LiDAR (Light Detection And Ranging) data through machine & deep learning.
We aim at identifying geo-spatial areas with archeological artifacts in a supervised fashion allowing the domain expert to flexibly tune parameters based on her needs.
arXiv Detail & Related papers (2020-04-05T05:36:37Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.