論文の概要: Searching for new physics using optically levitated sensors
- arxiv url: http://arxiv.org/abs/2008.13197v2
- Date: Thu, 14 Jan 2021 19:53:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-04 07:26:36.213144
- Title: Searching for new physics using optically levitated sensors
- Title(参考訳): 光浮揚センサを用いた新しい物理の探索
- Authors: David C. Moore, Andrew A. Geraci
- Abstract要約: 粒子物理学の標準モデルを超えた新しい物理の探索について述べる。
システムは今後10年間で標準量子限界に近づく力と加速感度に達することが期待されている。
対の質量を持つ新しい力や現象に対して、fg-ng領域の質量を持つ物体を用いた高精度なセンシングは、新しい物理学にとって大きな発見の可能性を秘めている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe a variety of searches for new physics beyond the Standard Model
of particle physics which may be enabled in the coming years by the use of
optically levitated masses in high vacuum. Such systems are expected to reach
force and acceleration sensitivities approaching (and possibly eventually
exceeding) the standard quantum limit over the next decade. For new forces or
phenomena that couple to mass, high precision sensing using objects with masses
in the fg-ng range have significant discovery potential for new physics. Such
applications include tests of fundamental force laws, searches for
non-neutrality of matter, high-frequency gravitational wave detectors, dark
matter searches, and tests of quantum foundations using massive objects.
- Abstract(参考訳): 本稿では,高真空下での光学浮揚質量の利用により,今後数年間に実現される粒子物理学の標準モデルを超えて,新しい物理学の様々な探索について述べる。
このようなシステムは、次の10年間で標準量子限界に近づく(そして最終的には超える)力と加速感度に達することが期待されている。
質量に結合する新しい力や現象のために、fg-ng範囲の質量を持つ物体を用いた高精度なセンシングは、新しい物理学において重要な発見可能性を持っている。
そのような応用には、基本力の法則の試験、物質の非中立性の探索、高周波重力波検出器、ダークマター探索、巨大な物体を用いた量子基礎の試験が含まれる。
関連論文リスト
- Quantum Sensors for High Energy Physics [23.475769837617236]
本報告では,2023年の高エネルギー物理学ワークショップの成果を報告する。
将来の素粒子物理学実験で利用可能な量子情報科学技術が特定された。
論文 参考訳(メタデータ) (2023-11-03T14:14:01Z) - Quantum sensing for particle physics [0.0]
量子センシングは、基礎物理学を探索するための急速に成長するアプローチである。
新しいセンサー技術には原子干渉計、光学デバイス、そして絡み合いを含む原子と核時計が含まれる。
このパースペクティブは、将来の粒子物理学実験におけるこれらの技術の機会を探求する。
論文 参考訳(メタデータ) (2023-05-19T08:34:19Z) - Quantum Science and the Search for Axion Dark Matter [91.3755431537592]
ダークマターパズルは現代の物理学において最も重要なオープン問題の一つである。
多数の精密実験が、アクシオンのようなダークマターの3つの非重力相互作用を探索している。
論文 参考訳(メタデータ) (2023-04-24T02:52:56Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
マイクロ波または高周波駆動は、量子センサーの小型化、エネルギー効率、非侵襲性を著しく制限する。
我々は、コヒーレント量子センシングに対する純粋に光学的アプローチを示すことによって、この制限を克服する。
この結果から, 磁気学やジャイロスコープの応用において, 量子センサの小型化が期待できる。
論文 参考訳(メタデータ) (2022-12-14T08:34:11Z) - Quantum Gravitational Sensor for Space Debris [0.0]
外部移動物体からの重力勾配信号を記述するための3次元モデルを確立する。
次に,Stern-Gerlach セットアップに基づく物質波干渉計の感度について理論的に検討する。
我々は、地球近傍の天体や、衛星近傍の宇宙ゴミについて検討する。
論文 参考訳(メタデータ) (2022-11-28T19:00:03Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
近年,量子情報科学のための実験手法や技術が急速に進歩している。
スピンベースの量子センサーは、無数の現象を探索するのに使うことができる。
スピンベースの量子センサーは、粒子衝突器や大規模粒子検出器を補完する基礎物理学のテストのための方法論を提供する。
論文 参考訳(メタデータ) (2022-03-17T17:36:48Z) - Snowmass 2021: Quantum Sensors for HEP Science -- Interferometers,
Mechanics, Traps, and Clocks [0.0]
我々は、原子干渉計によるセンシング、光学またはマイクロ波フィールドで読み取る機械装置、精密分光法に焦点を当てた。
これらの系が一意に寄与する可能性がある粒子物理学に関連する様々な検出対象を与える。
論文 参考訳(メタデータ) (2022-03-14T16:29:19Z) - A background-free optically levitated charge sensor [50.591267188664666]
本稿では,浮動小数点物体を用いたセンサの性能を制限した双極子モーメント相互作用をモデル化し,除去する新しい手法を提案する。
実演として、これは電子のそれよりはるかに低い、未知の電荷の探索に適用される。
この手法の副産物として、浮遊物体の電磁特性を個別に測定することができる。
論文 参考訳(メタデータ) (2021-12-20T08:16:28Z) - Machine-Learning Non-Conservative Dynamics for New-Physics Detection [69.45430691069974]
未知の力によって支配される軌道を考えると、ニューラル・ニュー物理検出器(NNPhD)は新しい物理を検出することを目的としています。
我々はNNPhDが、力場を保守的かつ非保守的成分に分解することで、新しい物理学の発見に成功したことを実証する。
また,NNPhDと積分器の結合が,減衰二重振り子の将来を予測する従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-05-31T18:00:10Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
超低温物質中における空洞を介する長距離磁気相互作用と光学格子の効果について検討した。
競合シナリオを導入しながら,グローバルな相互作用がシステムの根底にある磁気特性を変化させていることが判明した。
これにより、量子情報目的のためのロバストなメカニズムの設計に向けた新しい選択肢が可能になる。
論文 参考訳(メタデータ) (2020-11-16T08:03:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。