論文の概要: Wireless for Machine Learning
- arxiv url: http://arxiv.org/abs/2008.13492v3
- Date: Thu, 9 Jun 2022 15:56:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 07:35:44.669551
- Title: Wireless for Machine Learning
- Title(参考訳): 機械学習のためのワイヤレス
- Authors: Henrik Hellstr\"om, Jos\'e Mairton B. da Silva Jr, Mohammad Mohammadi
Amiri, Mingzhe Chen, Viktoria Fodor, H. Vincent Poor and Carlo Fischione
- Abstract要約: 我々は、分散データセット上で機械学習サービスをサポートするように設計された最先端のワイヤレス手法について、徹底的にレビューする。
文献にはアナログ・オーバー・ザ・エア計算とMLに最適化されたデジタル無線リソース管理という2つの明確なテーマがある。
このサーベイは、これらのメソッドを包括的に紹介し、最も重要な研究をレビューし、オープンな問題を強調し、アプリケーションのシナリオについて議論する。
- 参考スコア(独自算出の注目度): 91.13476340719087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As data generation increasingly takes place on devices without a wired
connection, machine learning (ML) related traffic will be ubiquitous in
wireless networks. Many studies have shown that traditional wireless protocols
are highly inefficient or unsustainable to support ML, which creates the need
for new wireless communication methods. In this survey, we give an exhaustive
review of the state-of-the-art wireless methods that are specifically designed
to support ML services over distributed datasets. Currently, there are two
clear themes within the literature, analog over-the-air computation and digital
radio resource management optimized for ML. This survey gives a comprehensive
introduction to these methods, reviews the most important works, highlights
open problems, and discusses application scenarios.
- Abstract(参考訳): データ生成が有線接続のないデバイスでますます行われるようになると、機械学習(ML)関連のトラフィックは、無線ネットワークでユビキタスになる。
多くの研究が、従来の無線プロトコルはMLをサポートするのに非常に非効率または持続不可能であることを示した。
本調査では、分散データセット上でMLサービスをサポートするように設計された最先端の無線手法について、網羅的にレビューする。
現在、文献にはアナログ・オーバー・ザ・エア計算とMLに最適化されたデジタル無線リソース管理という2つの明確なテーマがある。
このサーベイは、これらのメソッドを包括的に紹介し、最も重要な研究をレビューし、オープンな問題を強調し、アプリケーションのシナリオについて議論する。
関連論文リスト
- WirelessLLM: Empowering Large Language Models Towards Wireless Intelligence [16.722524706176767]
大規模言語モデル(LLM)は、無線通信システムに革命をもたらす可能性への関心を喚起している。
無線システム用LLMの既存の研究は、通信言語理解の直接的な応用に限られている。
本稿では,無線通信ネットワークのユニークな課題と要件に対処するため,LLMの適応と拡張のための総合的なフレームワークである WirelessLLM を提案する。
論文 参考訳(メタデータ) (2024-05-27T11:18:25Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
我々は,MLに基づく多種多様な研究への道を開くための詳細な測定キャンペーンを実施してきた。
得られたデータセットは、携帯電話(と2つの異なるオペレーター)とサイドリンク無線アクセス技術の両方のために、様々な都市環境にまたがるGPS位置の無線測定を提供する。
私たちは、MLが克服しなければならない課題と、MLが活用できる機能について、データの初期分析を提供しています。
論文 参考訳(メタデータ) (2022-12-20T15:26:39Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Transfer Learning for Future Wireless Networks: A Comprehensive Survey [49.746711269488515]
本稿では,無線ネットワークにおける転送学習の応用に関する包括的調査を行う。
まず,形式的定義,分類,様々な種類のtl技術を含むtlの概要について述べる。
次に,無線ネットワークにおける新たな課題に対処するために,多様なTLアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-15T14:19:55Z) - A Comprehensive Survey of Machine Learning Based Localization with
Wireless Signals [42.89359907212791]
本稿では,RF信号を用いた機械学習に基づくローカライズソリューションの包括的調査を行う。
本論文の主なポイントは、ローカリゼーションシステムの物理から生じるドメイン知識と、さまざまなMLアプローチとの相互作用である。
詳細な議論は、ローカリゼーションの問題に適用されたさまざまなMLメソッドに捧げられています。
論文 参考訳(メタデータ) (2020-12-21T08:10:46Z) - Distributed Machine Learning for Wireless Communication Networks:
Techniques, Architectures, and Applications [1.647426214278143]
分散機械学習(DML)技術は、無線通信にますます応用されている。
大規模、地理的に分散したデプロイメント、ユーザモビリティ、大量のデータなど、無線システムのユニークな特徴は、DML技術の設計に新たな課題をもたらす。
この調査は、無線ネットワークに焦点をあてた、現代的で包括的なDML技術の調査を提供することによって、ギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-12-02T19:53:32Z) - Applying Deep-Learning-Based Computer Vision to Wireless Communications:
Methodologies, Opportunities, and Challenges [100.45137961106069]
ディープラーニング(DL)はコンピュータビジョン(CV)分野で大きな成功を収めている。
本稿では,無線通信におけるDLベースのCVの適用について紹介する。
論文 参考訳(メタデータ) (2020-06-10T11:37:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。