Comment on: "Interaction of the magnetic quadrupole moment of a
non-relativistic particle with an electric field in a rotating frame. Ann.
Phys. 412 (2020) 168040''
- URL: http://arxiv.org/abs/2008.13604v1
- Date: Mon, 31 Aug 2020 13:51:01 GMT
- Title: Comment on: "Interaction of the magnetic quadrupole moment of a
non-relativistic particle with an electric field in a rotating frame. Ann.
Phys. 412 (2020) 168040''
- Authors: Francisco M. Fern\'andez
- Abstract summary: We analyze a recent treatment of the interaction of a magnetic quadrupole moment with a radial electric field for a non-relativistic particle in a rotating frame.
Authors presented eigenvalues and eigenfunctions for two sets of quantum numbers as if they belonged to the same physical problem when they are solutions for two different models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze a recent treatment of the interaction of a magnetic quadrupole
moment with a radial electric field for a non-relativistic particle in a
rotating frame and show that the derivation of the equations in the paper is
anything but rigorous. The authors presented eigenvalues and eigenfunctions for
two sets of quantum numbers as if they belonged to the same physical problem
when they are solutions for two different models. In addition to it, the
authors failed to comment on the possibility of multiple solutions for every
set of quantum numbers.
Related papers
- On the interaction of a magnetic quadrupole moment with an electric
field in a rotating frame [0.0]
We show that the conjectured allowed values of the cyclotron frequency are a mere artifact of the truncation of the power series used to solve the radial eigenvalue equation.
arXiv Detail & Related papers (2022-09-03T21:52:52Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Graphene in complex magnetic fields [0.0]
The eigenvalue problem for the non-hermitian Dirac-Weyl Hamiltonian leads to a pair of intertwined Schr"odinger equations.
The probability and currents densities are explored and some remarkable differences as compared with the real case are observed.
arXiv Detail & Related papers (2022-03-08T03:27:03Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Interaction of the magnetic quadrupole moment of a non-relativistic
particle with an electric field in the background of screw dislocations with
a rotating frame [0.0]
We consider a moving particle with a magnetic quadrupole moment in an elastic medium in the presence of a screw dislocation.
We derive wave and energy eigenvalue functions by employing analytical methods for two interaction configurations.
Due to the topological defect in the medium, we observed a shift in the angular momentum quantum number which affects the energy eigenvalues and the wave function of the system.
arXiv Detail & Related papers (2021-06-08T20:20:30Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Electric quadrupole moment of a neutral non-relativistic particle in the
presence of screw dislocation [0.0]
We investigate the interaction between electric and magnetic fields with an electric quadrupole moment of a spinless particle moving in an elastic medium which has a topological defect (screw dislocation)
By considering this interaction, the Schr"odinger equation is exactly solved by using the analytical method.
arXiv Detail & Related papers (2021-03-01T17:56:52Z) - Electron vortex beams in non-uniform magnetic fields [0.0]
We consider the quantum theory of paraxial non-relativistic electron beams in non-uniform magnetic fields, such as the Glaser field.
We find the wave function of an electron from such a beam and show that it is a joint eigenstate of two ($z$-dependent) commuting gauge-independent operators.
arXiv Detail & Related papers (2020-11-23T21:10:02Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.