Partition of kinetic energy and magnetic moment in dissipative
diamagnetism
- URL: http://arxiv.org/abs/2208.00161v4
- Date: Sat, 15 Jul 2023 08:42:34 GMT
- Title: Partition of kinetic energy and magnetic moment in dissipative
diamagnetism
- Authors: Jasleen Kaur, Aritra Ghosh, Malay Bandyopadhyay
- Abstract summary: We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
- Score: 20.218184785285132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we analyze dissipative diamagnetism, arising due to
dissipative cyclotron motion in two dimensions, in the light of the quantum
counterpart of energy equipartition theorem. We consider a charged quantum
particle moving in a harmonic well, in the presence of a uniform magnetic
field, and coupled to a quantum heat bath which is taken to be composed of an
infinite number of independent quantum oscillators. The quantum counterpart of
energy equipartition theorem tells us that it is possible to express the mean
kinetic energy of the dissipative oscillator as a two-fold average, where, the
first averaging is performed over the Gibbs canonical state of the heat bath
while the second one is governed by a probability distribution function
$P_k(\omega)$. We analyze this result further, and also demonstrate its
consistency in the weak-coupling limit. Following this, we compute the
equilibrium magnetic moment of the system, and reveal an interesting connection
with the quantum counterpart of energy equipartition theorem. The expressions
for kinetic energy and magnetic moment are reformulated in the context of
superstatistics, i.e. the superposition of two statistics. A comparative study
of the present results with those obtained from the more traditional Gibbs
approach is performed and a perfect agreement is obtained.
Related papers
- Energetics of the dissipative quantum oscillator [22.76327908349951]
We discuss some aspects of the energetics of a quantum Brownian particle placed in a harmonic trap.
Based on the fluctuation-dissipation theorem, we analyze two distinct notions of thermally-averaged energy.
We generalize our analysis to the case of the three-dimensional dissipative magneto-oscillator.
arXiv Detail & Related papers (2023-10-05T15:18:56Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Quasi-equilibrium and quantum correlation in an open spin-pair system [0.0]
Quasi-equilibrium states that can be prepared in solids through Nuclear Magnetic Resonance (NMR) techniques are out-of-equilibrium states that slowly relax towards thermodynamic equilibrium with the lattice.
In this work, we use the quantum discord dynamics as a witness of the quantum correlation in this kind of state.
arXiv Detail & Related papers (2023-03-29T04:33:06Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Hydrodynamic interpretation of generic squeezed coherent states: A
kinetic theory [0.0]
We define a quantum pressure, a quantum temperature and a quantum internal energy which are related to each other in the same fashion as in the classical kinetic theory.
In the end, we show that the kinetic internal energy is linked to the fractional transformer part of the underlying classical dynamics.
arXiv Detail & Related papers (2021-10-03T21:15:51Z) - A quantum fluctuation theorem for any Lindblad master equation [0.0]
We present a general quantum fluctuation theorem for the entropy production of an open quantum system coupled to multiple environments.
The theorem is genuinely quantum, as it can be expressed in terms of conservation of a Hermitian operator.
We show that the fluctuation theorem amounts to a relation between time-reversed dynamics of the global density matrix and a two-time correlation function.
arXiv Detail & Related papers (2021-08-12T19:28:38Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.