論文の概要: Learning All Credible Bayesian Network Structures for Model Averaging
- arxiv url: http://arxiv.org/abs/2008.13618v1
- Date: Thu, 27 Aug 2020 19:56:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-24 07:54:43.174194
- Title: Learning All Credible Bayesian Network Structures for Model Averaging
- Title(参考訳): モデル平均化のための全クレディブルベイズネットワーク構造学習
- Authors: Zhenyu A. Liao, Charupriya Sharma, James Cussens, Peter van Beek
- Abstract要約: 近似アルゴリズムの性能保証に着想を得たモデル平均化手法を提案する。
我々のアプローチは既存のアプローチよりも効率的で、ベイズ的ネットワークにスケールする。
- 参考スコア(独自算出の注目度): 3.81379858342235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Bayesian network is a widely used probabilistic graphical model with
applications in knowledge discovery and prediction. Learning a Bayesian network
(BN) from data can be cast as an optimization problem using the well-known
score-and-search approach. However, selecting a single model (i.e., the best
scoring BN) can be misleading or may not achieve the best possible accuracy. An
alternative to committing to a single model is to perform some form of Bayesian
or frequentist model averaging, where the space of possible BNs is sampled or
enumerated in some fashion. Unfortunately, existing approaches for model
averaging either severely restrict the structure of the Bayesian network or
have only been shown to scale to networks with fewer than 30 random variables.
In this paper, we propose a novel approach to model averaging inspired by
performance guarantees in approximation algorithms. Our approach has two
primary advantages. First, our approach only considers credible models in that
they are optimal or near-optimal in score. Second, our approach is more
efficient and scales to significantly larger Bayesian networks than existing
approaches.
- Abstract(参考訳): ベイズネットワークは、知識発見と予測に応用された確率的グラフィカルモデルとして広く利用されている。
データからベイズネットワーク(BN)を学習することは、よく知られたスコア・アンド・サーチ手法を用いて最適化問題として考えられる。
しかし、単一のモデル(すなわち最高のスコア bn)を選択することは誤解を招くか、最高の精度を達成することができない。
単一モデルへのコミットの代替として、ある形でBNの空間をサンプリングしたり列挙したりするベイズ的あるいは頻繁なモデル平均化を行う方法がある。
残念ながら、モデル平均化の既存のアプローチはベイズネットワークの構造を厳しく制限するか、30の確率変数未満のネットワークにしかスケールできないことが示されている。
本稿では,近似アルゴリズムの性能保証に触発されたモデル平均化手法を提案する。
我々のアプローチには2つの大きな利点がある。
まず,本手法は,スコアが最適あるいはほぼ最適であるという点において,信頼できるモデルのみを考察する。
第二に、我々のアプローチは既存のアプローチよりも効率が良く、ベイズ的ネットワークにスケールする。
関連論文リスト
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
BEND(Efficient Neural Network Diffusion)に基づくバッグング深層学習学習アルゴリズムを提案する。
我々のアプローチは単純だが効果的であり、まず複数のトレーニングされたモデルの重みとバイアスを入力として、オートエンコーダと潜伏拡散モデルを訓練する。
提案したBENDアルゴリズムは,元のトレーニングモデルと拡散モデルの両方の平均および中央値の精度を一貫して向上させることができる。
論文 参考訳(メタデータ) (2024-03-23T08:40:38Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep
Ensembles are More Efficient than Single Models [5.0401589279256065]
アンサンブルは、アーキテクチャファミリ内の単一モデルをスケーリングするよりも、より計算的に(推論において)効率的であることを示す。
本研究では,不確実性推定に関連する課題に対して,これらの効率性の向上について検討する。
多数のネットワークアーキテクチャおよび不確実性タスクにわたるImageNetスケールデータの実験により、提案したウィンドウベースの早期実行アプローチは、より優れた不確実性計算トレードオフを実現することができることを示す。
論文 参考訳(メタデータ) (2023-03-14T15:57:54Z) - VertiBayes: Learning Bayesian network parameters from vertically partitioned data with missing values [2.9707233220536313]
フェデレーション学習は、分散データに基づいて機械学習モデルをトレーニングすることを可能にする。
本稿では,垂直分割データ上でベイズネットワークを学習するためのVertiBayesという新しい手法を提案する。
提案手法は,従来のアルゴリズムを用いて学習したモデルに匹敵するモデルを生成する。
論文 参考訳(メタデータ) (2022-10-31T11:13:35Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Fast Network Community Detection with Profile-Pseudo Likelihood Methods [19.639557431997037]
ブロックモデル確率関数に適合するほとんどのアルゴリズムは、大規模ネットワークには拡張できない。
本稿では,行ラベルと列ラベルを疎結合する新たな可能性的アプローチを提案する。
本手法は,ブロックモデルにおいて,コミュニティの強い一貫した推定値を提供することを示す。
論文 参考訳(メタデータ) (2020-11-01T23:40:26Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
ケースベース推論(CBR)システムは,与えられた問題に類似した事例を検索することで,新たな問題を解決する。
本稿では,知識ベース(KB)の推論において,そのようなシステムが実現可能であることを示す。
提案手法は,KB内の類似エンティティからの推論パスを収集することにより,エンティティの属性を予測する。
論文 参考訳(メタデータ) (2020-10-07T17:48:12Z) - Neural Model-based Optimization with Right-Censored Observations [42.530925002607376]
ニューラルネットワーク(NN)は、モデルベースの最適化手順のコアでうまく機能することが実証されている。
トレーニングされた回帰モデルは,いくつかのベースラインよりも優れた予測品質が得られることを示す。
論文 参考訳(メタデータ) (2020-09-29T07:32:30Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z) - Model Fusion via Optimal Transport [64.13185244219353]
ニューラルネットワークのための階層モデル融合アルゴリズムを提案する。
これは、不均一な非i.d.データに基づいてトレーニングされたニューラルネットワーク間での"ワンショット"な知識伝達に成功していることを示す。
論文 参考訳(メタデータ) (2019-10-12T22:07:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。