Asymptotically optimal strategies for online prediction with
history-dependent experts
- URL: http://arxiv.org/abs/2008.13703v1
- Date: Mon, 31 Aug 2020 16:00:42 GMT
- Title: Asymptotically optimal strategies for online prediction with
history-dependent experts
- Authors: Jeff Calder and Nadejda Drenska
- Abstract summary: We establish sharpally optimal strategies for the problem of online prediction with history dependent experts.
We show that the optimality conditions over the de Bruijn graph correspond to a graph Poisson equation.
- Score: 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We establish sharp asymptotically optimal strategies for the problem of
online prediction with history dependent experts. The prediction problem is
played (in part) over a discrete graph called the $d$ dimensional de Bruijn
graph, where $d$ is the number of days of history used by the experts. Previous
work [11] established $O(\varepsilon)$ optimal strategies for $n=2$ experts and
$d\leq 4$ days of history, while [10] established $O(\varepsilon^{1/3})$
optimal strategies for all $n\geq 2$ and all $d\geq 1$, where the game is
played for $N$ steps and $\varepsilon=N^{-1/2}$. In this paper, we show that
the optimality conditions over the de Bruijn graph correspond to a graph
Poisson equation, and we establish $O(\varepsilon)$ optimal strategies for all
values of $n$ and $d$.
Related papers
- Competitive strategies to use "warm start" algorithms with predictions [12.970501425097645]
We consider the problem of learning and using predictions for warm start algorithms with predictions.
In this setting, an algorithm is given an instance of a problem, and a prediction of the solution.
We give competitive guarantees against stronger benchmarks that consider a set of $k$ predictions.
arXiv Detail & Related papers (2024-05-06T17:38:20Z) - On the Unlikelihood of D-Separation [69.62839677485087]
We provide analytic evidence that on large graphs, d-separation is a rare phenomenon, even when guaranteed to exist.
For the PC Algorithm, while it is known that its worst-case guarantees fail on non-sparse graphs, we show that the same is true for the average case.
For UniformSGS, while it is known that the running time is exponential for existing edges, we show that in the average case, that is the expected running time for most non-existing edges as well.
arXiv Detail & Related papers (2023-03-10T00:11:18Z) - Streaming Algorithms for Learning with Experts: Deterministic Versus
Robust [62.98860182111096]
In the online learning with experts problem, an algorithm must make a prediction about an outcome on each of $T$ days (or times)
The goal is to make a prediction with the minimum cost, specifically compared to the best expert in the set.
We show a space lower bound of $widetildeOmegaleft(fracnMRTright)$ for any deterministic algorithm that achieves regret $R$ when the best expert makes $M$ mistakes.
arXiv Detail & Related papers (2023-03-03T04:39:53Z) - Learning on the Edge: Online Learning with Stochastic Feedback Graphs [12.83118601099289]
We study an extension where the directed feedback graph is bandit.
In each round every edge in the graph is either realized or not with a distinct probability for each edge.
We derive a more efficient algorithm featuring a dependence on weighted versions of the independence and weak domination numbers.
arXiv Detail & Related papers (2022-10-09T11:21:08Z) - Efficient and Optimal Fixed-Time Regret with Two Experts [5.650647159993238]
Prediction with expert advice is a foundational problem in online learning.
In instances with $T$ rounds and $n$ experts, the classical Multiplicative Weights Update method suffers at most $sqrt(T/2)ln n$ regret when $T$ is known beforehand.
When the number of experts $n$ is small/fixed, algorithms with better regret guarantees exist.
arXiv Detail & Related papers (2022-03-15T01:07:09Z) - Mediated Uncoupled Learning: Learning Functions without Direct
Input-output Correspondences [80.95776331769899]
We consider the task of predicting $Y$ from $X$ when we have no paired data of them.
A naive approach is to predict $U$ from $X$ using $S_X$ and then $Y$ from $U$ using $S_Y$.
We propose a new method that avoids predicting $U$ but directly learns $Y = f(X)$ by training $f(X)$ with $S_X$ to predict $h(U)$.
arXiv Detail & Related papers (2021-07-16T22:13:29Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Local classical MAX-CUT algorithm outperforms $p=2$ QAOA on high-girth
regular graphs [0.0]
We show that for all degrees $D ge 2$ of girth $> 5$, QAOA$ has a larger expected cut fraction than QAOA$$ on $G$.
We conjecture that for every constant $p$, there exists a local classical MAX-CUT algorithm that performs as well as QAOA$_p$ on all graphs.
arXiv Detail & Related papers (2021-01-14T09:17:20Z) - Online Prediction With History-Dependent Experts: The General Case [1.52292571922932]
We study the problem of prediction of binary sequences with expert advice in the online setting, which is a classic example of online machine learning.
We interpret the binary sequence as the price history of a stock, and view the predictor as the investor, which converts the problem into a stock prediction problem.
arXiv Detail & Related papers (2020-07-31T19:40:20Z) - Taking a hint: How to leverage loss predictors in contextual bandits? [63.546913998407405]
We study learning in contextual bandits with the help of loss predictors.
We show that the optimal regret is $mathcalO(minsqrtT, sqrtmathcalETfrac13)$ when $mathcalE$ is known.
arXiv Detail & Related papers (2020-03-04T07:36:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.