LaDDer: Latent Data Distribution Modelling with a Generative Prior
- URL: http://arxiv.org/abs/2009.00088v1
- Date: Mon, 31 Aug 2020 20:10:01 GMT
- Title: LaDDer: Latent Data Distribution Modelling with a Generative Prior
- Authors: Shuyu Lin and Ronald Clark
- Abstract summary: We propose LaDDer to achieve accurate modelling of the latent data distribution in a variational autoencoder framework.
LaDDer is a meta-embedding concept, which uses multiple VAE models to learn an embedding of the embeddings.
We show that our LaDDer model is able to accurately estimate complex latent distribution and results in improvement in the representation quality.
- Score: 21.27563489899532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we show that the performance of a learnt generative model is
closely related to the model's ability to accurately represent the inferred
\textbf{latent data distribution}, i.e. its topology and structural properties.
We propose LaDDer to achieve accurate modelling of the latent data distribution
in a variational autoencoder framework and to facilitate better representation
learning. The central idea of LaDDer is a meta-embedding concept, which uses
multiple VAE models to learn an embedding of the embeddings, forming a ladder
of encodings. We use a non-parametric mixture as the hyper prior for the
innermost VAE and learn all the parameters in a unified variational framework.
From extensive experiments, we show that our LaDDer model is able to accurately
estimate complex latent distribution and results in improvement in the
representation quality. We also propose a novel latent space interpolation
method that utilises the derived data distribution.
Related papers
- Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
We propose a novel Variational Autoencoder (VAE)-based model that addresses limitations of current approaches.
Inspired by the TVAE model, our approach incorporates a Bayesian Gaussian Mixture model (BGM) within the VAE architecture.
We thoroughly validate our model on three real-world datasets with mixed data types, including two medically relevant ones.
arXiv Detail & Related papers (2024-04-12T12:31:06Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
We propose DistDiff, a training-free data expansion framework based on the distribution-aware diffusion model.
DistDiff consistently enhances accuracy across a diverse range of datasets compared to models trained solely on original data.
arXiv Detail & Related papers (2024-03-11T14:07:53Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization [14.732408788010313]
ML applications increasingly rely on complex deep learning models and large datasets.
To scale computation and data, these models are inevitably trained in a distributed manner in clusters of nodes, and their updates are aggregated before being applied to the model.
With data augmentation added to these settings, there is a critical need for robust and efficient aggregation systems.
We show that our approach significantly enhances the robustness of state-of-the-art Byzantine resilient aggregators.
arXiv Detail & Related papers (2023-02-12T06:38:30Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
Variational Autoencoder (VAE) and its variations are classic generative models by learning a low-dimensional latent representation to satisfy some prior distribution.
We propose to let the prior match the embedding distribution rather than imposing the latent variables to fit the prior.
arXiv Detail & Related papers (2020-09-23T09:33:24Z) - Variational Hyper-Encoding Networks [62.74164588885455]
We propose a framework called HyperVAE for encoding distributions of neural network parameters theta.
We predict the posterior distribution of the latent code, then use a matrix-network decoder to generate a posterior distribution q(theta)
arXiv Detail & Related papers (2020-05-18T06:46:09Z) - Characterizing and Avoiding Problematic Global Optima of Variational
Autoencoders [28.36260646471421]
Variational Auto-encoders (VAEs) are deep generative latent variable models.
Recent work shows that traditional training methods tend to yield solutions that violate desiderata.
We show that both issues stem from the fact that the global optima of the VAE training objective often correspond to undesirable solutions.
arXiv Detail & Related papers (2020-03-17T15:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.