A Collaborative Ensemble Framework for CTR Prediction
- URL: http://arxiv.org/abs/2411.13700v1
- Date: Wed, 20 Nov 2024 20:38:56 GMT
- Title: A Collaborative Ensemble Framework for CTR Prediction
- Authors: Xiaolong Liu, Zhichen Zeng, Xiaoyi Liu, Siyang Yuan, Weinan Song, Mengyue Hang, Yiqun Liu, Chaofei Yang, Donghyun Kim, Wen-Yen Chen, Jiyan Yang, Yiping Han, Rong Jin, Bo Long, Hanghang Tong, Philip S. Yu,
- Abstract summary: We propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models.
Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning.
We validate our framework on three public datasets and a large-scale industrial dataset from Meta.
- Score: 73.59868761656317
- License:
- Abstract: Recent advances in foundation models have established scaling laws that enable the development of larger models to achieve enhanced performance, motivating extensive research into large-scale recommendation models. However, simply increasing the model size in recommendation systems, even with large amounts of data, does not always result in the expected performance improvements. In this paper, we propose a novel framework, Collaborative Ensemble Training Network (CETNet), to leverage multiple distinct models, each with its own embedding table, to capture unique feature interaction patterns. Unlike naive model scaling, our approach emphasizes diversity and collaboration through collaborative learning, where models iteratively refine their predictions. To dynamically balance contributions from each model, we introduce a confidence-based fusion mechanism using general softmax, where model confidence is computed via negation entropy. This design ensures that more confident models have a greater influence on the final prediction while benefiting from the complementary strengths of other models. We validate our framework on three public datasets (AmazonElectronics, TaobaoAds, and KuaiVideo) as well as a large-scale industrial dataset from Meta, demonstrating its superior performance over individual models and state-of-the-art baselines. Additionally, we conduct further experiments on the Criteo and Avazu datasets to compare our method with the multi-embedding paradigm. Our results show that our framework achieves comparable or better performance with smaller embedding sizes, offering a scalable and efficient solution for CTR prediction tasks.
Related papers
- Fitting Multiple Machine Learning Models with Performance Based Clustering [8.763425474439552]
Traditional machine learning approaches assume that data comes from a single generating mechanism, which may not hold for most real life data.
We introduce a clustering framework that eliminates this assumption by grouping the data according to the relations between the features and the target values.
We extend our framework to applications having streaming data where we produce outcomes using an ensemble of models.
arXiv Detail & Related papers (2024-11-10T19:38:35Z) - Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
We introduce model kinship, the degree of similarity or relatedness between Large Language Models.
We find that there is a certain relationship between model kinship and the performance gains after model merging.
We propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets.
arXiv Detail & Related papers (2024-10-16T14:29:29Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
We present a novel sandbox suite tailored for integrated data-model co-development.
This sandbox provides a comprehensive experimental platform, enabling rapid iteration and insight-driven refinement of both data and models.
We also uncover fruitful insights gleaned from exhaustive benchmarks, shedding light on the critical interplay between data quality, diversity, and model behavior.
arXiv Detail & Related papers (2024-07-16T14:40:07Z) - A Lightweight Feature Fusion Architecture For Resource-Constrained Crowd
Counting [3.5066463427087777]
We introduce two lightweight models to enhance the versatility of crowd-counting models.
These models maintain the same downstream architecture while incorporating two distinct backbones: MobileNet and MobileViT.
We leverage Adjacent Feature Fusion to extract diverse scale features from a Pre-Trained Model (PTM) and subsequently combine these features seamlessly.
arXiv Detail & Related papers (2024-01-11T15:13:31Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
We leverage the meta-features associated with each entity as a source of worldly knowledge and employ entity representations from the models.
We propose using the consistency between these representations and the meta-features as a metric for evaluating pre-trained models.
Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and image models.
arXiv Detail & Related papers (2024-01-02T17:08:26Z) - Deep incremental learning models for financial temporal tabular datasets
with distribution shifts [0.9790236766474201]
The framework uses a simple basic building block (decision trees) to build self-similar models of any required complexity.
We demonstrate our scheme using XGBoost models trained on the Numerai dataset and show that a two layer deep ensemble of XGBoost models over different model snapshots delivers high quality predictions.
arXiv Detail & Related papers (2023-03-14T14:10:37Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - CAMERO: Consistency Regularized Ensemble of Perturbed Language Models
with Weight Sharing [83.63107444454938]
We propose a consistency-regularized ensemble learning approach based on perturbed models, named CAMERO.
Specifically, we share the weights of bottom layers across all models and apply different perturbations to the hidden representations for different models, which can effectively promote the model diversity.
Our experiments using large language models demonstrate that CAMERO significantly improves the generalization performance of the ensemble model.
arXiv Detail & Related papers (2022-04-13T19:54:51Z) - When Ensembling Smaller Models is More Efficient than Single Large
Models [52.38997176317532]
We show that ensembles can outperform single models with both higher accuracy and requiring fewer total FLOPs to compute.
This presents an interesting observation that output diversity in ensembling can often be more efficient than training larger models.
arXiv Detail & Related papers (2020-05-01T18:56:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.