Limit of Gaussian operations and measurements for Gaussian state
discrimination, and its application to state comparison
- URL: http://arxiv.org/abs/2009.00108v1
- Date: Mon, 31 Aug 2020 21:17:44 GMT
- Title: Limit of Gaussian operations and measurements for Gaussian state
discrimination, and its application to state comparison
- Authors: David E. Roberson, Shuro Izumi, Wojciech Roga, Jonas S.
Neergaard-Nielsen, Masahiro Takeoka, Ulrik L. Andersen
- Abstract summary: We consider the so-called constant-$hatp$ displaced states which include mixtures of multimode coherent states arbitrarily displaced along a common axis.
We first show that no global or local Gaussian transformations or generalized Gaussian measurements can lead to a better discrimination method than simple homodyne measurements applied to each mode separately and classical postprocessing of the results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We determine the optimal method of discriminating and comparing quantum
states from a certain class of multimode Gaussian states and their mixtures
when arbitrary global Gaussian operations and general Gaussian measurements are
allowed. We consider the so-called constant-$\hat{p}$ displaced states which
include mixtures of multimode coherent states arbitrarily displaced along a
common axis. We first show that no global or local Gaussian transformations or
generalized Gaussian measurements can lead to a better discrimination method
than simple homodyne measurements applied to each mode separately and classical
postprocessing of the results. This result is applied to binary state
comparison problems. We show that homodyne measurements, separately performed
on each mode, are the best Gaussian measurement for binary state comparison. We
further compare the performance of the optimal Gaussian strategy for binary
coherent states comparison with these of non-Gaussian strategies using photon
detections.
Related papers
- Efficient Hamiltonian, structure and trace distance learning of Gaussian states [2.949446809950691]
We show that it is possible to learn the underlying interaction graph in a similar setting and sample complexity.
Our results put the status of the quantum Hamiltonian learning problem for continuous variable systems in a much more advanced state.
arXiv Detail & Related papers (2024-11-05T15:07:20Z) - Classical simulation and quantum resource theory of non-Gaussian optics [1.3124513975412255]
We propose efficient algorithms for simulating Gaussian unitaries and measurements applied to non-Gaussian initial states.
From the perspective of quantum resource theories, we investigate the properties of this type of non-Gaussianity measure and compute optimal decomposition for states relevant to continuous-variable quantum computing.
arXiv Detail & Related papers (2024-04-10T15:53:41Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Matched entanglement witness criteria for continuous variables [11.480994804659908]
We use quantum entanglement witnesses derived from Gaussian operators to study the separable criteria of continuous variable states.
This opens a way for precise detection of non-Gaussian entanglement.
arXiv Detail & Related papers (2022-08-26T03:45:00Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - Efficient simulation of Gottesman-Kitaev-Preskill states with Gaussian
circuits [68.8204255655161]
We study the classical simulatability of Gottesman-Kitaev-Preskill (GKP) states in combination with arbitrary displacements, a large set of symplectic operations and homodyne measurements.
For these types of circuits, neither continuous-variable theorems based on the non-negativity of quasi-probability distributions nor discrete-variable theorems can be employed to assess the simulatability.
arXiv Detail & Related papers (2022-03-21T17:57:02Z) - Conversion of Gaussian states under incoherent Gaussian operations [0.0]
We study when can one coherent state be converted into another under incoherent operations.
The structure of incoherent Gaussian operations of two-mode continuous-variable systems is discussed further.
arXiv Detail & Related papers (2021-10-15T13:04:49Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.