LodoNet: A Deep Neural Network with 2D Keypoint Matchingfor 3D LiDAR
Odometry Estimation
- URL: http://arxiv.org/abs/2009.00164v1
- Date: Tue, 1 Sep 2020 01:09:41 GMT
- Title: LodoNet: A Deep Neural Network with 2D Keypoint Matchingfor 3D LiDAR
Odometry Estimation
- Authors: Ce Zheng, Yecheng Lyu, Ming Li, Ziming Zhang
- Abstract summary: We propose to transfer the LiDAR frames to image space and reformulate the problem as image feature extraction.
With the help of scale-invariant feature transform (SIFT) for feature extraction, we are able to generate matched keypoint pairs (MKPs)
A convolutional neural network pipeline is designed for LiDAR odometry estimation by extracted MKPs.
The proposed scheme, namely LodoNet, is then evaluated in the KITTI odometry estimation benchmark, achieving on par with or even better results than the state-of-the-art.
- Score: 22.664095688406412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based LiDAR odometry (LO) estimation attracts increasing
research interests in the field of autonomous driving and robotics. Existing
works feed consecutive LiDAR frames into neural networks as point clouds and
match pairs in the learned feature space. In contrast, motivated by the success
of image based feature extractors, we propose to transfer the LiDAR frames to
image space and reformulate the problem as image feature extraction. With the
help of scale-invariant feature transform (SIFT) for feature extraction, we are
able to generate matched keypoint pairs (MKPs) that can be precisely returned
to the 3D space. A convolutional neural network pipeline is designed for LiDAR
odometry estimation by extracted MKPs. The proposed scheme, namely LodoNet, is
then evaluated in the KITTI odometry estimation benchmark, achieving on par
with or even better results than the state-of-the-art.
Related papers
- NeRF-LOAM: Neural Implicit Representation for Large-Scale Incremental
LiDAR Odometry and Mapping [14.433784957457632]
We propose a novel NeRF-based LiDAR odometry and mapping approach, NeRF-LOAM, consisting of three modules neural odometry, neural mapping, and mesh reconstruction.
Our approach achieves state-of-the-art odometry and mapping performance, as well as a strong generalization in large-scale environments utilizing LiDAR data.
arXiv Detail & Related papers (2023-03-19T16:40:36Z) - GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
We propose a Graph Convolution based Spatial Propagation Network (GraphCSPN) as a general approach for depth completion.
In this work, we leverage convolution neural networks as well as graph neural networks in a complementary way for geometric representation learning.
Our method achieves the state-of-the-art performance, especially when compared in the case of using only a few propagation steps.
arXiv Detail & Related papers (2022-10-19T17:56:03Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
We propose a simple and effective scheme to introduce the spatial information from LiDAR signals to the monocular 3D detectors.
We use the resulting data to train a 3D detector with the same architecture as the baseline model.
Experimental results show that the proposed method can significantly boost the performance of the baseline model.
arXiv Detail & Related papers (2022-01-26T09:21:41Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - VR3Dense: Voxel Representation Learning for 3D Object Detection and
Monocular Dense Depth Reconstruction [0.951828574518325]
We introduce a method for jointly training 3D object detection and monocular dense depth reconstruction neural networks.
It takes as inputs, a LiDAR point-cloud, and a single RGB image during inference and produces object pose predictions as well as a densely reconstructed depth map.
While our object detection is trained in a supervised manner, the depth prediction network is trained with both self-supervised and supervised loss functions.
arXiv Detail & Related papers (2021-04-13T04:25:54Z) - Model-inspired Deep Learning for Light-Field Microscopy with Application
to Neuron Localization [27.247818386065894]
We propose a model-inspired deep learning approach to perform fast and robust 3D localization of sources using light-field microscopy images.
This is achieved by developing a deep network that efficiently solves a convolutional sparse coding problem.
Experiments on localization of mammalian neurons from light-fields show that the proposed approach simultaneously provides enhanced performance, interpretability and efficiency.
arXiv Detail & Related papers (2021-03-10T16:24:47Z) - SelfVoxeLO: Self-supervised LiDAR Odometry with Voxel-based Deep Neural
Networks [81.64530401885476]
We propose a self-supervised LiDAR odometry method, dubbed SelfVoxeLO, to tackle these two difficulties.
Specifically, we propose a 3D convolution network to process the raw LiDAR data directly, which extracts features that better encode the 3D geometric patterns.
We evaluate our method's performances on two large-scale datasets, i.e., KITTI and Apollo-SouthBay.
arXiv Detail & Related papers (2020-10-19T09:23:39Z) - Scan-based Semantic Segmentation of LiDAR Point Clouds: An Experimental
Study [2.6205925938720833]
State of the art methods use deep neural networks to predict semantic classes for each point in a LiDAR scan.
A powerful and efficient way to process LiDAR measurements is to use two-dimensional, image-like projections.
We demonstrate various techniques to boost the performance and to improve runtime as well as memory constraints.
arXiv Detail & Related papers (2020-04-06T11:08:12Z) - Cylindrical Convolutional Networks for Joint Object Detection and
Viewpoint Estimation [76.21696417873311]
We introduce a learnable module, cylindrical convolutional networks (CCNs), that exploit cylindrical representation of a convolutional kernel defined in the 3D space.
CCNs extract a view-specific feature through a view-specific convolutional kernel to predict object category scores at each viewpoint.
Our experiments demonstrate the effectiveness of the cylindrical convolutional networks on joint object detection and viewpoint estimation.
arXiv Detail & Related papers (2020-03-25T10:24:58Z) - CAE-LO: LiDAR Odometry Leveraging Fully Unsupervised Convolutional
Auto-Encoder for Interest Point Detection and Feature Description [10.73965992177754]
We propose a fully unsupervised Conal Auto-Encoder based LiDAR Odometry (CAE-LO) that detects interest points from spherical ring data using 2D CAE and extracts features from multi-resolution voxel model using 3D CAE.
We make several key contributions: 1) experiments based on KITTI dataset show that our interest points can capture more local details to improve the matching success rate on unstructured scenarios and our features outperform state-of-the-art by more than 50% in matching inlier ratio.
arXiv Detail & Related papers (2020-01-06T01:26:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.