Boosting 3D Object Detection by Simulating Multimodality on Point Clouds
- URL: http://arxiv.org/abs/2206.14971v1
- Date: Thu, 30 Jun 2022 01:44:30 GMT
- Title: Boosting 3D Object Detection by Simulating Multimodality on Point Clouds
- Authors: Wu Zheng, Mingxuan Hong, Li Jiang, Chi-Wing Fu
- Abstract summary: This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
- Score: 51.87740119160152
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a new approach to boost a single-modality (LiDAR) 3D
object detector by teaching it to simulate features and responses that follow a
multi-modality (LiDAR-image) detector. The approach needs LiDAR-image data only
when training the single-modality detector, and once well-trained, it only
needs LiDAR data at inference. We design a novel framework to realize the
approach: response distillation to focus on the crucial response samples and
avoid the background samples; sparse-voxel distillation to learn voxel
semantics and relations from the estimated crucial voxels; a fine-grained
voxel-to-point distillation to better attend to features of small and distant
objects; and instance distillation to further enhance the deep-feature
consistency. Experimental results on the nuScenes dataset show that our
approach outperforms all SOTA LiDAR-only 3D detectors and even surpasses the
baseline LiDAR-image detector on the key NDS metric, filling 72% mAP gap
between the single- and multi-modality detectors.
Related papers
- Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
We propose LiDAR-2D Self-paced Learning (LiSe) for unsupervised 3D detection.
RGB images serve as a valuable complement to LiDAR data, offering precise 2D localization cues.
Our framework devises a self-paced learning pipeline that incorporates adaptive sampling and weak model aggregation strategies.
arXiv Detail & Related papers (2024-07-11T14:58:49Z) - Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.
Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.
This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3D framework entails cross-modal knowledge distillation at various levels to inject LiDAR-domain knowledge into a monocular detector during training.
By identifying foreground sparsity as the main culprit behind existing methods' suboptimal training, we exploit the precise localisation information embedded in LiDAR points.
Our method ranks 1st in both KITTI validation and test benchmarks, significantly surpassing all existing monocular methods, supervised or semi-supervised.
arXiv Detail & Related papers (2023-10-28T07:12:09Z) - Robust 3D Object Detection from LiDAR-Radar Point Clouds via Cross-Modal
Feature Augmentation [7.364627166256136]
This paper presents a novel framework for robust 3D object detection from point clouds via cross-modal hallucination.
We introduce multiple alignments on both spatial and feature levels to achieve simultaneous backbone refinement and hallucination generation.
Experiments on the View-of-Delft dataset show that our proposed method outperforms the state-of-the-art (SOTA) methods for both radar and LiDAR object detection.
arXiv Detail & Related papers (2023-09-29T15:46:59Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDAR is a fully convolutional one-stage 3D object detector for LiDAR point clouds of autonomous driving scenes.
We show that an RV-based 3D detector with standard 2D convolutions alone can achieve comparable performance to state-of-the-art BEV-based detectors.
arXiv Detail & Related papers (2022-05-27T05:42:16Z) - LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object
Detection [96.63947479020631]
In many real-world applications, the LiDAR points used by mass-produced robots and vehicles usually have fewer beams than that in large-scale public datasets.
We propose the LiDAR Distillation to bridge the domain gap induced by different LiDAR beams for 3D object detection.
arXiv Detail & Related papers (2022-03-28T17:59:02Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
We propose a simple and effective scheme to introduce the spatial information from LiDAR signals to the monocular 3D detectors.
We use the resulting data to train a 3D detector with the same architecture as the baseline model.
Experimental results show that the proposed method can significantly boost the performance of the baseline model.
arXiv Detail & Related papers (2022-01-26T09:21:41Z) - The Devil is in the Task: Exploiting Reciprocal Appearance-Localization
Features for Monocular 3D Object Detection [62.1185839286255]
Low-cost monocular 3D object detection plays a fundamental role in autonomous driving.
We introduce a Dynamic Feature Reflecting Network, named DFR-Net.
We rank 1st among all the monocular 3D object detectors in the KITTI test set.
arXiv Detail & Related papers (2021-12-28T07:31:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.