PlotThread: Creating Expressive Storyline Visualizations using
Reinforcement Learning
- URL: http://arxiv.org/abs/2009.00249v1
- Date: Tue, 1 Sep 2020 06:01:54 GMT
- Title: PlotThread: Creating Expressive Storyline Visualizations using
Reinforcement Learning
- Authors: Tan Tang, Renzhong Li, Xinke Wu, Shuhan Liu, Johannes Knittel, Steffen
Koch, Thomas Ertl, Lingyun Yu, Peiran Ren, and Yingcai Wu
- Abstract summary: We propose a reinforcement learning framework to train an AI agent that assists users in exploring the design space efficiently and generating well-optimized storylines.
Based on the framework, we introduce PlotThread, an authoring tool that integrates a set of flexible interactions to support easy customization of storyline visualizations.
- Score: 27.129882090324422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Storyline visualizations are an effective means to present the evolution of
plots and reveal the scenic interactions among characters. However, the design
of storyline visualizations is a difficult task as users need to balance
between aesthetic goals and narrative constraints. Despite that the
optimization-based methods have been improved significantly in terms of
producing aesthetic and legible layouts, the existing (semi-) automatic methods
are still limited regarding 1) efficient exploration of the storyline design
space and 2) flexible customization of storyline layouts. In this work, we
propose a reinforcement learning framework to train an AI agent that assists
users in exploring the design space efficiently and generating well-optimized
storylines. Based on the framework, we introduce PlotThread, an authoring tool
that integrates a set of flexible interactions to support easy customization of
storyline visualizations. To seamlessly integrate the AI agent into the
authoring process, we employ a mixed-initiative approach where both the agent
and designers work on the same canvas to boost the collaborative design of
storylines. We evaluate the reinforcement learning model through qualitative
and quantitative experiments and demonstrate the usage of PlotThread using a
collection of use cases.
Related papers
- StoryAgent: Customized Storytelling Video Generation via Multi-Agent Collaboration [88.94832383850533]
We propose a multi-agent framework designed for Customized Storytelling Video Generation (CSVG)
StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process.
Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency.
Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
arXiv Detail & Related papers (2024-11-07T18:00:33Z) - DataNarrative: Automated Data-Driven Storytelling with Visualizations and Texts [27.218934418961197]
We introduce a novel task for data story generation and a benchmark containing 1,449 stories from diverse sources.
To address the challenges of crafting coherent data stories, we propose a multiagent framework employing two LLM agents.
While our agentic framework generally outperforms non-agentic counterparts in both model-based and human evaluations, the results also reveal unique challenges in data story generation.
arXiv Detail & Related papers (2024-08-09T21:31:33Z) - StoryImager: A Unified and Efficient Framework for Coherent Story Visualization and Completion [78.1014542102578]
Story visualization aims to generate realistic and coherent images based on a storyline.
Current models adopt a frame-by-frame architecture by transforming the pre-trained text-to-image model into an auto-regressive manner.
We propose a bidirectional, unified, and efficient framework, namely StoryImager.
arXiv Detail & Related papers (2024-04-09T03:22:36Z) - TARN-VIST: Topic Aware Reinforcement Network for Visual Storytelling [14.15543866199545]
As a cross-modal task, visual storytelling aims to generate a story for an ordered image sequence automatically.
We propose a novel method, Topic Aware Reinforcement Network for VIsual StoryTelling (TARN-VIST)
In particular, we pre-extracted the topic information of stories from both visual and linguistic perspectives.
arXiv Detail & Related papers (2024-03-18T08:01:23Z) - Make-A-Storyboard: A General Framework for Storyboard with Disentangled
and Merged Control [131.1446077627191]
We propose a new presentation form for Story Visualization called Storyboard, inspired by film-making.
Within each scene in Storyboard, characters engage in activities at the same location, necessitating both visually consistent scenes and characters.
Our method could be seamlessly integrated into mainstream Image Customization methods, empowering them with the capability of story visualization.
arXiv Detail & Related papers (2023-12-06T12:16:23Z) - Text-Only Training for Visual Storytelling [107.19873669536523]
We formulate visual storytelling as a visual-conditioned story generation problem.
We propose a text-only training method that separates the learning of cross-modality alignment and story generation.
arXiv Detail & Related papers (2023-08-17T09:32:17Z) - StoryDALL-E: Adapting Pretrained Text-to-Image Transformers for Story
Continuation [76.44802273236081]
We develop a model StoryDALL-E for story continuation, where the generated visual story is conditioned on a source image.
We show that our retro-fitting approach outperforms GAN-based models for story continuation and facilitates copying of visual elements from the source image.
Overall, our work demonstrates that pretrained text-to-image synthesis models can be adapted for complex and low-resource tasks like story continuation.
arXiv Detail & Related papers (2022-09-13T17:47:39Z) - SGEITL: Scene Graph Enhanced Image-Text Learning for Visual Commonsense
Reasoning [61.57887011165744]
multimodal Transformers have made great progress in the task of Visual Commonsense Reasoning.
We propose a Scene Graph Enhanced Image-Text Learning framework to incorporate visual scene graphs in commonsense reasoning.
arXiv Detail & Related papers (2021-12-16T03:16:30Z) - Semantic Palette: Guiding Scene Generation with Class Proportions [34.746963256847145]
We introduce a conditional framework with novel architecture designs and learning objectives, which effectively accommodates class proportions to guide the scene generation process.
Thanks to the semantic control, we can produce layouts close to the real distribution, helping enhance the whole scene generation process.
We demonstrate the merit of our approach for data augmentation: semantic segmenters trained on real layout-image pairs outperform models only trained on real pairs.
arXiv Detail & Related papers (2021-06-03T07:04:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.