論文の概要: 3D-DEEP: 3-Dimensional Deep-learning based on elevation patterns forroad
scene interpretation
- arxiv url: http://arxiv.org/abs/2009.00330v2
- Date: Wed, 27 Jan 2021 12:05:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 01:28:58.942100
- Title: 3D-DEEP: 3-Dimensional Deep-learning based on elevation patterns forroad
scene interpretation
- Title(参考訳): 3D-DEEP:標高パターンに基づく3次元深層学習
- Authors: A. Hern\'andez, S. Woo, H. Corrales, I. Parra, E. Kim, D. F. Llorca
and M. A. Sotelo
- Abstract要約: CNNに基づくセマンティックセグメンテーションのための新しいネットアーキテクチャ(3D-DEEP)とそのエンドツーエンドトレーニング手法について述べる。
開発されたモデルは、Cityscapesデータセット上でトレーニングされ、検証された。
一方、KITTIdatasetでは、F1エラー値は97.85%、96.02%に達している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road detection and segmentation is a crucial task in computer vision for safe
autonomous driving. With this in mind, a new net architecture (3D-DEEP) and its
end-to-end training methodology for CNN-based semantic segmentation are
described along this paper for. The method relies on disparity filtered and
LiDAR projected images for three-dimensional information and image feature
extraction through fully convolutional networks architectures. The developed
models were trained and validated over Cityscapes dataset using just fine
annotation examples with 19 different training classes, and over KITTI road
dataset. 72.32% mean intersection over union(mIoU) has been obtained for the 19
Cityscapes training classes using the validation images. On the other hand,
over KITTIdataset the model has achieved an F1 error value of 97.85%
invalidation and 96.02% using the test images.
- Abstract(参考訳): 道路検出とセグメンテーションは、安全な自動運転のためのコンピュータビジョンにおいて重要な課題である。
このことを念頭において、CNNに基づくセマンティックセグメンテーションのための新しいネットアーキテクチャ(3D-DEEP)とそのエンドツーエンドトレーニング手法について述べる。
この手法は、完全畳み込みネットワークアーキテクチャによる3次元情報と画像特徴抽出のための不均一フィルタとLiDAR投影画像に依存する。
開発したモデルは、19の異なるトレーニングクラスを含む詳細なアノテーション例とkitti roadデータセットを使用して、cityscapesデータセット上でトレーニングおよび検証された。
72.32%の平均和合(mIoU)が、検証画像を用いて19の都市景観訓練クラスで得られた。
一方、kittidatasetでは、テスト画像を使用してモデルが97.85%の無効化と96.02%のエラー値を達成した。
関連論文リスト
- Advancements in Road Lane Mapping: Comparative Fine-Tuning Analysis of Deep Learning-based Semantic Segmentation Methods Using Aerial Imagery [16.522544814241495]
本研究は、自動運転車(AV)のHDマップの必要性に対処するものである。
地球観測データは地図作成に有用な資源を提供するが、道路線抽出のための特別なモデルはまだリモートセンシングでは未開発である。
本研究では,高精細リモートセンシング画像から道路路面マーキング抽出のための基礎的深層学習に基づくセマンティックセマンティックセマンティクスモデルを比較した。
論文 参考訳(メタデータ) (2024-10-08T06:24:15Z) - Transfer Learning from Simulated to Real Scenes for Monocular 3D Object Detection [9.708971995966476]
本稿では,これらの課題に対処するための2段階のトレーニング戦略を紹介する。
当社のアプローチでは,大規模合成データセットであるRoadSense3Dのモデルをトレーニングしています。
実世界のデータセットの組み合わせでモデルを微調整し、実用条件への適応性を高める。
論文 参考訳(メタデータ) (2024-08-28T08:44:58Z) - Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration [107.61458720202984]
本稿では,自律走行シーンにおける3次元知覚を高めるための,新しい自己教師型学習フレームワークを提案する。
本稿では,画像とポイントクラウドデータの領域ギャップを埋めるために,学習可能な変換アライメントを提案する。
我々は剛性ポーズを推定するために密度の高い2D-3D対応を確立する。
論文 参考訳(メタデータ) (2024-01-23T02:41:06Z) - A Dual-Cycled Cross-View Transformer Network for Unified Road Layout
Estimation and 3D Object Detection in the Bird's-Eye-View [4.251500966181852]
本稿では,トランスアーキテクチャとCycleGAN学習フレームワークにヒントを得た,道路レイアウト推定と3次元物体検出のための統一モデルを提案する。
道路配置推定におけるマルチクラス学習の効果を検討するために,幅広い学習シナリオを構築した。
その結果,道路配置推定と3次元物体検出の両タスクにおいて,最先端の性能を実現することができた。
論文 参考訳(メタデータ) (2022-09-19T08:43:38Z) - Paint and Distill: Boosting 3D Object Detection with Semantic Passing
Network [70.53093934205057]
ライダーやカメラセンサーからの3Dオブジェクト検出タスクは、自動運転に不可欠である。
本研究では,既存のライダーベース3D検出モデルの性能向上を図るために,SPNetという新しいセマンティックパスフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-12T12:35:34Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
弱教師付き有色物体検出(WSOD)は,画像レベルのアノテーションを用いた有色度モデルの開発を目的としている。
擬似ラベルとネットワーク予測の相互校正ループを明確に設定し,自己校正学習戦略を提案する。
十分に整合したアノテーションを持つはるかに小さなデータセットであっても、モデルがより優れたパフォーマンスと一般化性を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-04T02:45:22Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
3D MOT問題に対する統一型学習型アプローチを提案します。
我々は、完全にトレーニング可能なデータアソシエーションにNeural Message Passing Networkを使用します。
AMOTAの65.6%の最先端性能と58%のIDスウィッチを達成して、公開可能なnuScenesデータセットに対する提案手法のメリットを示す。
論文 参考訳(メタデータ) (2021-04-23T17:59:28Z) - Learning Collision-Free Space Detection from Stereo Images: Homography
Matrix Brings Better Data Augmentation [16.99302954185652]
少数のトレーニングサンプルを使用して、深い畳み込みニューラルネットワーク(DCNN)を訓練することは、依然としてオープンな課題です。
本稿では,dcnnの性能向上に有効なトレーニングデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-12-14T19:14:35Z) - PerMO: Perceiving More at Once from a Single Image for Autonomous
Driving [76.35684439949094]
単一画像から完全テクスチャ化された車両の3次元モデルを検出し,セグメント化し,再構成する新しい手法を提案する。
私たちのアプローチは、ディープラーニングの強みと従来のテクニックの優雅さを組み合わせています。
我々はこれらのアルゴリズムを自律運転システムに統合した。
論文 参考訳(メタデータ) (2020-07-16T05:02:45Z) - Auto-Rectify Network for Unsupervised Indoor Depth Estimation [119.82412041164372]
ハンドヘルド環境に現れる複雑な自我運動が,学習深度にとって重要な障害であることが確認された。
本稿では,相対回転を除去してトレーニング画像の修正を効果的に行うデータ前処理手法を提案する。
その結果、従来の教師なしSOTA法よりも、難易度の高いNYUv2データセットよりも優れていた。
論文 参考訳(メタデータ) (2020-06-04T08:59:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。