Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics
- URL: http://arxiv.org/abs/2009.00463v3
- Date: Sun, 15 Aug 2021 11:26:30 GMT
- Title: Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics
- Authors: Seung-Hwan Baek, Hayato Ikoma, Daniel S. Jeon, Yuqi Li, Wolfgang
Heidrich, Gordon Wetzstein, Min H. Kim
- Abstract summary: We propose a compact single-shot monocular hyperspectral-depth (HS-D) imaging method.
Our method uses a diffractive optical element (DOE), the point spread function of which changes with respect to both depth and spectrum.
To facilitate learning the DOE, we present a first HS-D dataset by building a benchtop HS-D imager.
- Score: 72.9038524082252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imaging depth and spectrum have been extensively studied in isolation from
each other for decades. Recently, hyperspectral-depth (HS-D) imaging emerges to
capture both information simultaneously by combining two different imaging
systems; one for depth, the other for spectrum. While being accurate, this
combinational approach induces increased form factor, cost, capture time, and
alignment/registration problems. In this work, departing from the combinational
principle, we propose a compact single-shot monocular HS-D imaging method. Our
method uses a diffractive optical element (DOE), the point spread function of
which changes with respect to both depth and spectrum. This enables us to
reconstruct spectrum and depth from a single captured image. To this end, we
develop a differentiable simulator and a neural-network-based reconstruction
that are jointly optimized via automatic differentiation. To facilitate
learning the DOE, we present a first HS-D dataset by building a benchtop HS-D
imager that acquires high-quality ground truth. We evaluate our method with
synthetic and real experiments by building an experimental prototype and
achieve state-of-the-art HS-D imaging results.
Related papers
- Passive Snapshot Coded Aperture Dual-Pixel RGB-D Imaging [25.851398356458425]
Single-shot 3D sensing is useful in many application areas such as microscopy, medical imaging, surgical navigation, and autonomous driving.
We propose CADS (Coded Aperture Dual-Pixel Sensing), in which we use a coded aperture in the imaging lens along with a DP sensor.
Our resulting CADS imaging system demonstrates improvement of >1.5dB PSNR in all-in-focus (AIF) estimates and 5-6% in depth estimation quality over naive DP sensing.
arXiv Detail & Related papers (2024-02-28T06:45:47Z) - Aperture Diffraction for Compact Snapshot Spectral Imaging [27.321750056840706]
We demonstrate a compact, cost-effective snapshot spectral imaging system named Aperture Diffraction Imaging Spectrometer (ADIS)
A new optical design that each point in the object space is multiplexed to discrete encoding locations on the mosaic filter sensor is introduced.
The Cascade Shift-Shuffle Spectral Transformer (CSST) with strong perception of the diffraction degeneration is designed to solve a sparsity-constrained inverse problem.
arXiv Detail & Related papers (2023-09-27T16:48:46Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - A Model-data-driven Network Embedding Multidimensional Features for
Tomographic SAR Imaging [5.489791364472879]
We propose a new model-data-driven network to achieve tomoSAR imaging based on multi-dimensional features.
We add two 2D processing modules, both convolutional encoder-decoder structures, to enhance multi-dimensional features of the imaging scene effectively.
Compared with the conventional CS-based FISTA method and DL-based gamma-Net method, the result of our proposed method has better performance on completeness while having decent imaging accuracy.
arXiv Detail & Related papers (2022-11-28T02:01:43Z) - Rank-Enhanced Low-Dimensional Convolution Set for Hyperspectral Image
Denoising [50.039949798156826]
This paper tackles the challenging problem of hyperspectral (HS) image denoising.
We propose rank-enhanced low-dimensional convolution set (Re-ConvSet)
We then incorporate Re-ConvSet into the widely-used U-Net architecture to construct an HS image denoising method.
arXiv Detail & Related papers (2022-07-09T13:35:12Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z) - End to end hyperspectral imaging system with coded compression imaging
process [13.00211539170695]
We present a physics-informed self-supervising CNN method based on a coded aperture spectral imaging system.
Our method effectively exploits the spatial-spectral relativization from the coded spectral information and forms a self-supervising system based on the camera quantum effect model.
arXiv Detail & Related papers (2021-09-06T13:39:54Z) - Unpaired Single-Image Depth Synthesis with cycle-consistent Wasserstein
GANs [1.0499611180329802]
Real-time estimation of actual environment depth is an essential module for various autonomous system tasks.
In this study, latest advancements in the field of generative neural networks are leveraged to fully unsupervised single-image depth synthesis.
arXiv Detail & Related papers (2021-03-31T09:43:38Z) - Dual Pixel Exploration: Simultaneous Depth Estimation and Image
Restoration [77.1056200937214]
We study the formation of the DP pair which links the blur and the depth information.
We propose an end-to-end DDDNet (DP-based Depth and De Network) to jointly estimate the depth and restore the image.
arXiv Detail & Related papers (2020-12-01T06:53:57Z) - Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline [100.5353614588565]
We propose to incorporate the domain knowledge of the LDR image formation pipeline into our model.
We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization.
We demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
arXiv Detail & Related papers (2020-04-02T17:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.