Large model enhanced computational ghost imaging
- URL: http://arxiv.org/abs/2503.08710v1
- Date: Mon, 10 Mar 2025 03:34:28 GMT
- Title: Large model enhanced computational ghost imaging
- Authors: Yifan Chen, Hongjun An, Zhe Sun, Tong Tian, Mingliang Chen, Christian Spielmann, Xuelong Li,
- Abstract summary: Ghost imaging (GI) achieves 2D image reconstruction through high-order correlation of 1D bucket signals and 2D light field information.<n>Recent investigations have established that deep learning (DL) can substantially enhance the ghost imaging reconstruction quality.<n>We propose the first large imaging model with 1.4 billion parameters that incorporates the physical principles of GI (GILM)
- Score: 44.77879260113026
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ghost imaging (GI) achieves 2D image reconstruction through high-order correlation of 1D bucket signals and 2D light field information, particularly demonstrating enhanced detection sensitivity and high-quality image reconstruction via efficient photon collection in scattering media. Recent investigations have established that deep learning (DL) can substantially enhance the ghost imaging reconstruction quality. Furthermore, with the emergence of large models like SDXL, GPT-4, etc., the constraints of conventional DL in parameters and architecture have been transcended, enabling models to comprehensively explore relationships among all distinct positions within feature sequences. This paradigm shift has significantly advanced the capability of DL in restoring severely degraded and low-resolution imagery, making it particularly advantageous for noise-robust image reconstruction in GI applications. In this paper, we propose the first large imaging model with 1.4 billion parameters that incorporates the physical principles of GI (GILM). The proposed GILM implements a skip connection mechanism to mitigate gradient explosion challenges inherent in deep architectures, ensuring sufficient parametric capacity to capture intricate correlations among object single-pixel measurements. Moreover, GILM leverages multi-head attention mechanism to learn spatial dependencies across pixel points during image reconstruction, facilitating the extraction of comprehensive object information for subsequent reconstruction. We validated the effectiveness of GILM through a series of experiments, including simulated object imaging, imaging objects in free space, and imaging object located 52 meters away in underwater environment. The experimental results show that GILM effectively analyzes the fluctuation trends of the collected signals, thereby optimizing the recovery of the object's image from the acquired data.
Related papers
- Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior [13.148815217684277]
Large scale factor super-resolution (SR) algorithms are vital for maximizing the utilization of low-resolution (LR) satellite data captured from orbit.
Existing methods confront challenges in recovering SR images with clear textures and correct ground objects.
We introduce a novel framework, the Semantic Guided Diffusion Model (SGDM), designed for large scale factor remote sensing image super-resolution.
arXiv Detail & Related papers (2024-05-11T16:06:16Z) - Graph Image Prior for Unsupervised Dynamic Cardiac Cine MRI Reconstruction [10.330083869344445]
We propose a novel scheme for dynamic MRI representation, named Graph Image Prior'' (GIP)
GIP adopts a two-stage generative network in a new modeling methodology, which first employs independent CNNs to recover the image structure for each frame.
A graph convolutional network is utilized for feature fusion and image generation.
arXiv Detail & Related papers (2024-03-23T08:57:46Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Latent Diffusion Prior Enhanced Deep Unfolding for Snapshot Spectral Compressive Imaging [17.511583657111792]
Snapshot spectral imaging reconstruction aims to reconstruct three-dimensional spatial-spectral images from a single-shot two-dimensional compressed measurement.
We introduce a generative model, namely the latent diffusion model (LDM), to generate degradation-free prior to deep unfolding method.
arXiv Detail & Related papers (2023-11-24T04:55:20Z) - Passive superresolution imaging of incoherent objects [63.942632088208505]
Method consists of measuring the field's spatial mode components in the image plane in the overcomplete basis of Hermite-Gaussian modes and their superpositions.
Deep neural network is used to reconstruct the object from these measurements.
arXiv Detail & Related papers (2023-04-19T15:53:09Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
Near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots.
Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises.
To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc.
We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered.
A model-based deep learning network is designed to restore the
arXiv Detail & Related papers (2022-11-28T01:28:33Z) - DeepRM: Deep Recurrent Matching for 6D Pose Refinement [77.34726150561087]
DeepRM is a novel recurrent network architecture for 6D pose refinement.
The architecture incorporates LSTM units to propagate information through each refinement step.
DeepRM achieves state-of-the-art performance on two widely accepted challenging datasets.
arXiv Detail & Related papers (2022-05-28T16:18:08Z) - DH-GAN: A Physics-driven Untrained Generative Adversarial Network for 3D
Microscopic Imaging using Digital Holography [3.4635026053111484]
Digital holography is a 3D imaging technique by emitting a laser beam with a plane wavefront to an object and measuring the intensity of the diffracted waveform, called holograms.
Recently, deep learning (DL) methods have been used for more accurate holographic processing.
We propose a new DL architecture based on generative adversarial networks that uses a discriminative network for realizing a semantic measure for reconstruction quality.
arXiv Detail & Related papers (2022-05-25T17:13:45Z) - REPLICA: Enhanced Feature Pyramid Network by Local Image Translation and
Conjunct Attention for High-Resolution Breast Tumor Detection [6.112883009328882]
We call our method enhanced featuREsynthesis network by Local Image translation and Conjunct Attention, or REPLICA.
We use a convolutional autoencoder as a generator to create new images by injecting objects into images via local Pyramid and reconstruction of their features extracted in hidden layers.
Then due to the larger number of simulated images, we use a visual transformer to enhance outputs of each ResNet layer that serve as inputs to a feature pyramid network.
arXiv Detail & Related papers (2021-11-22T21:33:02Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.