Model-Independent Simulation Complexity of Complex Quantum Dynamics
- URL: http://arxiv.org/abs/2009.00495v2
- Date: Mon, 21 Sep 2020 02:49:23 GMT
- Title: Model-Independent Simulation Complexity of Complex Quantum Dynamics
- Authors: Aiman Khan, David Quigley, Max Marcus, Erling Thyrhaug and Animesh
Datta
- Abstract summary: We present a model-independent measure of dynamical complexity based on simulating complex quantum dynamics using stroboscopic Markovian dynamics.
Tools from classical signal processing enable us to infer the Hilbert space dimension of a complex quantum system evolving under a time-independent Hamiltonian.
- Score: 0.13999481573773068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a model-independent measure of dynamical complexity based on
simulating complex quantum dynamics using stroboscopic Markovian dynamics.
Tools from classical signal processing enable us to infer the Hilbert space
dimension of a complex quantum system evolving under a time-independent
Hamiltonian via pulsed interrogation. We evaluate our model-independent
simulation complexity (MISC) for the spin-boson model and simulated third-order
pump-probe spectroscopy data for exciton transport in coupled dimers with
vibrational levels. The former provides insights into coherence and population
dynamics in the two-level system while the latter reveals the dimension of the
singly-excited manifold of the dimer. Finally, we probe the complexity of
excitonic transport in light harvesting 2 (LH2) and Fenna-Matthews-Olson (FMO)
complexes using data from two recent nonlinear ultrafast optical spectroscopy
experiments. For the latter we make some model-independent inferences that are
commensurate with model-specific ones. This includes estimating the fewest
number of parameters needed to fit the experimental data and identifying the
spatial extent, i.e., delocalization size, of quantum states occurring in this
complex quantum dynamics.
Related papers
- Photonic Simulation of Localization Phenomena Using Boson Sampling [0.0]
We propose boson sampling as an alternative compact synthetic platform performing at room temperature.
By mapping the time-evolution unitary of a Hamiltonian onto an interferometer via continuous-variable gate decompositions, we present proof-of-principle results of localization characteristics of a single particle.
arXiv Detail & Related papers (2024-10-17T18:00:05Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Accelerating the analysis of optical quantum systems using the Koopman operator [1.2499537119440245]
prediction of photon echoes is a crucial technique for understanding optical quantum systems.
This article investigates the use of data-driven surrogate models based on the Koopman operator to accelerate this process.
arXiv Detail & Related papers (2023-10-25T12:02:04Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum Simulation of the Bosonic Creutz Ladder with a Parametric Cavity [5.336258422653554]
We use a multimode superconducting parametric cavity as a hardware-efficient analog quantum simulator.
We realize a lattice in synthetic dimensions with complex hopping interactions.
The complex-valued hopping interaction further allows us to simulate, for instance, gauge potentials and topological models.
arXiv Detail & Related papers (2021-01-11T14:46:39Z) - Simulation of complex dynamics of mean-field $p$-spin models using
measurement-based quantum feedback control [0.0]
We apply a new method for simulating nonlinear dynamics of many-body spin systems using quantum measurement and feedback.
We study applications including properties of dynamical phase transitions and the emergence of spontaneous symmetry breaking in the adiabatic dynamics of the collective spin.
arXiv Detail & Related papers (2020-04-23T18:22:03Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.