A Primer on Motion Capture with Deep Learning: Principles, Pitfalls and
Perspectives
- URL: http://arxiv.org/abs/2009.00564v2
- Date: Wed, 2 Sep 2020 20:29:12 GMT
- Title: A Primer on Motion Capture with Deep Learning: Principles, Pitfalls and
Perspectives
- Authors: Alexander Mathis and Steffen Schneider and Jessy Lauer and Mackenzie
W. Mathis
- Abstract summary: In this primer we review the budding field of motion capture with deep learning.
We will discuss the principles of those novel algorithms, highlight their potential as well as pitfalls for experimentalists.
- Score: 67.34875595325597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting behavioral measurements non-invasively from video is stymied by
the fact that it is a hard computational problem. Recent advances in deep
learning have tremendously advanced predicting posture from videos directly,
which quickly impacted neuroscience and biology more broadly. In this primer we
review the budding field of motion capture with deep learning. In particular,
we will discuss the principles of those novel algorithms, highlight their
potential as well as pitfalls for experimentalists, and provide a glimpse into
the future.
Related papers
- Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain.
Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
arXiv Detail & Related papers (2022-12-09T13:22:27Z) - Resolving Copycat Problems in Visual Imitation Learning via Residual
Action Prediction [10.275717930942989]
We show that imitation from observation histories performs worse than imitation from the most recent observation.
We propose a novel imitation learning neural network architecture that does not suffer from this issue by design.
arXiv Detail & Related papers (2022-07-20T07:15:32Z) - Deep Learning to See: Towards New Foundations of Computer Vision [88.69805848302266]
This book criticizes the supposed scientific progress in the field of computer vision.
It proposes the investigation of vision within the framework of information-based laws of nature.
arXiv Detail & Related papers (2022-06-30T15:20:36Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
We use a variant of deep generative models called - CycleGAN, to learn the unknown mapping between pre- and post-learning neural activities.
We develop an end-to-end pipeline to preprocess, train and evaluate calcium fluorescence signals, and a procedure to interpret the resulting deep learning models.
arXiv Detail & Related papers (2021-11-25T13:24:19Z) - Physics-based Deep Learning [22.248409468073145]
Digital book contains a practical and comprehensive introduction to everything related to deep learning in the context of physical simulations.
Includes hands-on code examples in the form of Jupyter notebooks to quickly get started.
Beyond standard supervised learning from data, we'll look at physical loss constraints, more tightly coupled learning algorithms with differentiable simulations, as well as reinforcement learning and uncertainty modeling.
arXiv Detail & Related papers (2021-09-11T09:38:02Z) - Review of Video Predictive Understanding: Early ActionRecognition and
Future Action Prediction [39.966828592322315]
Action prediction is a major sub-area of video predictive understanding.
Various mathematical tools are widely adopted jointly with computer vision techniques for these two tasks.
Structures that rely on deep convolutional neural networks and recurrent neural networks have been extensively proposed for improving the performance of existing vision tasks.
arXiv Detail & Related papers (2021-07-11T22:46:52Z) - A Study of the Mathematics of Deep Learning [1.14219428942199]
"Deep Learning"/"Deep Neural Nets" is a technological marvel that is now increasingly deployed at the cutting-edge of artificial intelligence tasks.
This thesis takes several steps towards building strong theoretical foundations for these new paradigms of deep-learning.
arXiv Detail & Related papers (2021-04-28T22:05:54Z) - Deep Recurrent Encoder: A scalable end-to-end network to model brain
signals [122.1055193683784]
We propose an end-to-end deep learning architecture trained to predict the brain responses of multiple subjects at once.
We successfully test this approach on a large cohort of magnetoencephalography (MEG) recordings acquired during a one-hour reading task.
arXiv Detail & Related papers (2021-03-03T11:39:17Z) - Self-Supervised Human Depth Estimation from Monocular Videos [99.39414134919117]
Previous methods on estimating detailed human depth often require supervised training with ground truth' depth data.
This paper presents a self-supervised method that can be trained on YouTube videos without known depth.
Experiments demonstrate that our method enjoys better generalization and performs much better on data in the wild.
arXiv Detail & Related papers (2020-05-07T09:45:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.