Materials Challenges for Trapped-Ion Quantum Computers
- URL: http://arxiv.org/abs/2009.00568v2
- Date: Wed, 2 Sep 2020 20:55:57 GMT
- Title: Materials Challenges for Trapped-Ion Quantum Computers
- Authors: Kenneth R. Brown, John Chiaverini, Jeremy Sage, and Hartmut H\"affner
- Abstract summary: Trapped-ion quantum information processors store information in atomic ions maintained in position in free space via electric fields.
Quantum logic is enacted via manipulation of the ions' internal and shared motional quantum states using optical and microwave signals.
While trapped ions show great promise for quantum-enhanced computation, sensing, and communication, materials research is needed to design traps that allow for improved performance.
- Score: 0.6299766708197883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trapped-ion quantum information processors store information in atomic ions
maintained in position in free space via electric fields. Quantum logic is
enacted via manipulation of the ions' internal and shared motional quantum
states using optical and microwave signals. While trapped ions show great
promise for quantum-enhanced computation, sensing, and communication, materials
research is needed to design traps that allow for improved performance by means
of integration of system components, including optics and electronics for
ion-qubit control, while minimizing the near-ubiquitous electric-field noise
produced by trap-electrode surfaces. In this review, we consider the materials
requirements for such integrated systems, with a focus on problems that hinder
current progress toward practical quantum computation. We give suggestions for
how materials scientists and trapped-ion technologists can work together to
develop materials-based integration and noise-mitigation strategies to enable
the next generation of trapped-ion quantum computers.
Related papers
- Simulating optically-active spin defects with a quantum computer [3.3011710036065325]
We develop fault-tolerant quantum algorithms to simulate optically active defect states and their radiative emission rates.
We conclude by offering a forward-looking perspective on the potential of quantum computers to enhance quantum sensor capabilities.
arXiv Detail & Related papers (2024-05-21T18:00:02Z) - Quantum Digital Simulation of Cavity Quantum Electrodynamics: Insights from Superconducting and Trapped Ion Quantum Testbeds [0.016994625126740815]
We present an early exploration of the potential for quantum computers to efficiently investigate open CQED physics.
Our simulations make use of a recent quantum algorithm that maps the dynamics of a singly excited open Tavis-Cummings model containing $N$ atoms.
By applying technology-specific transpilation and error mitigation techniques, we minimize the impact of gate errors, noise, and decoherence in each hardware platform.
arXiv Detail & Related papers (2024-04-05T02:25:49Z) - Fault Localization in a Microfabricated Surface Ion Trap using Diamond
Nitrogen-Vacancy Center Magnetometry [0.0]
We use a high-resolution quantum magnetic imaging technique, based on nitrogen-vacancy centers in diamond, to investigate short-circuit faults in an ion trap chip.
We imaged currents from these short-circuit faults to ground and compared to intentionally-created faults, finding that the root-cause of the faults was failures in the on-chip trench capacitors.
arXiv Detail & Related papers (2024-03-13T17:30:06Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Design of Light-Matter Interactions for Quantum Technologies [0.0]
We design radiation patterns capable of creating effective light-matter interactions suited to applications in quantum computing, quantum simulation and quantum sensing.
On the one hand, we have used dynamical decoupling techniques to design quantum operations that are robust against errors in environmental and control fields.
On the other hand, we have studied generalised models of light-matter interaction, leading to the discovery of selective multi-photon interactions in the Rabi-Stark model.
arXiv Detail & Related papers (2021-01-27T21:30:36Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Integrated optical multi-ion quantum logic [4.771545115836015]
Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable.
We use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates.
Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping.
arXiv Detail & Related papers (2020-02-06T13:52:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.