Integrated optical multi-ion quantum logic
- URL: http://arxiv.org/abs/2002.02258v2
- Date: Mon, 13 Jul 2020 16:52:36 GMT
- Title: Integrated optical multi-ion quantum logic
- Authors: Karan K. Mehta, Chi Zhang, Maciej Malinowski, Thanh-Long Nguyen,
Martin Stadler, Jonathan P. Home
- Abstract summary: Planar-fabricated optics integrated within ion trap devices can make such systems simultaneously more robust and parallelizable.
We use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates.
Similar devices may also find applications in neutral atom and ion-based quantum-sensing and timekeeping.
- Score: 4.771545115836015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Practical and useful quantum information processing (QIP) requires
significant improvements with respect to current systems, both in error rates
of basic operations and in scale. Individual trapped-ion qubits' fundamental
qualities are promising for long-term systems, but the optics involved in their
precise control are a barrier to scaling. Planar-fabricated optics integrated
within ion trap devices can make such systems simultaneously more robust and
parallelizable, as suggested by previous work with single ions. Here we use
scalable optics co-fabricated with a surface-electrode ion trap to achieve
high-fidelity multi-ion quantum logic gates, often the limiting elements in
building up the precise, large-scale entanglement essential to quantum
computation. Light is efficiently delivered to a trap chip in a cryogenic
environment via direct fibre coupling on multiple channels, eliminating the
need for beam alignment into vacuum systems and cryostats and lending
robustness to vibrations and beam pointing drifts. This allows us to perform
ground-state laser cooling of ion motion, and to implement gates generating
two-ion entangled states with fidelities $>99.3(2)\%$. This work demonstrates
hardware that reduces noise and drifts in sensitive quantum logic, and
simultaneously offers a route to practical parallelization for high-fidelity
quantum processors. Similar devices may also find applications in neutral atom
and ion-based quantum-sensing and timekeeping.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Scalable architecture for trapped-ion quantum computing using RF traps and dynamic optical potentials [0.0]
In principle there is no fundamental limit to the number of ion-based qubits that can be confined in a single 1D register.
Here we propose a holistic, scalable architecture for quantum computing with large ion-crystals.
We show that these cells behave as nearly independent quantum registers, allowing for parallel entangling gates on all cells.
arXiv Detail & Related papers (2023-11-02T12:06:49Z) - Multi-site Integrated Optical Addressing of Trapped Ions [0.0]
One of the most effective ways to advance the performance of quantum computers is to increase the number of qubits or quantum resources in the system.
A major technical challenge that must be solved is scaling the delivery of optical signals to many individual ions.
This work represents an important step towards the realization of scalable integrated photonics for atomic clocks and trapped-ion quantum information systems.
arXiv Detail & Related papers (2023-08-28T22:28:07Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Manipulating phonons of a trapped-ion system using optical tweezers [0.0]
An array of optical tweezers affords site-dependent control over a conventional radio-frequency ion trap.
We describe protocols for programming the array of optical tweezers to attain a set of target phonon modes with high accuracy.
Our scheme extends the utility of trapped-ions as a platform for quantum computation and simulation.
arXiv Detail & Related papers (2021-03-04T19:14:54Z) - Cold ion beam in a storage ring as a platform for large-scale quantum
computers and simulators: challenges and directions for research and
development [0.0]
Large-scale storage-ring-type ion-trap system capable of storing, cooling, and controlling a large number of ions as a platform for scalable quantum computing (QC) and quantum simulations (QS)
In this paper we consider a large leap forward in terms of the number of qubits, from fewer than 100 available in state-of-the-art linear ion-trap devices today to an order of 105 crystallized ions in the storage-ring setup.
arXiv Detail & Related papers (2021-01-12T00:52:33Z) - Integrated multi-wavelength control of an ion qubit [0.0]
Monolithic integration of control technologies for atomic systems is a promising route to the development of quantum computers and portable quantum sensors.
Here we demonstrate a surface-electrode ion-trap chip using integrated waveguides and grating couplers.
Laser light from violet to infrared is coupled onto the chip via an optical-fiber array, creating an inherently stable optical path.
arXiv Detail & Related papers (2020-01-14T21:23:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.