論文の概要: Automated Storytelling via Causal, Commonsense Plot Ordering
- arxiv url: http://arxiv.org/abs/2009.00829v2
- Date: Wed, 30 Dec 2020 18:39:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 18:25:31.704403
- Title: Automated Storytelling via Causal, Commonsense Plot Ordering
- Title(参考訳): コモンセンス・プロット・オーダリングによるストーリーテリングの自動化
- Authors: Prithviraj Ammanabrolu, Wesley Cheung, William Broniec, Mark O. Riedl
- Abstract要約: プロットイベント間の因果関係は、ストーリーの認識とプロットのコヒーレンスを高めると考えられている。
我々は,コモンセンス推論から推定される因果関係として,ソフト因果関係の概念を導入する。
- 参考スコア(独自算出の注目度): 20.032706455801353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated story plot generation is the task of generating a coherent sequence
of plot events. Causal relations between plot events are believed to increase
the perception of story and plot coherence. In this work, we introduce the
concept of soft causal relations as causal relations inferred from commonsense
reasoning. We demonstrate C2PO, an approach to narrative generation that
operationalizes this concept through Causal, Commonsense Plot Ordering. Using
human-participant protocols, we evaluate our system against baseline systems
with different commonsense reasoning reasoning and inductive biases to
determine the role of soft causal relations in perceived story quality. Through
these studies we also probe the interplay of how changes in commonsense norms
across storytelling genres affect perceptions of story quality.
- Abstract(参考訳): 自動ストーリープロット生成は、プロットイベントの一貫性のあるシーケンスを生成するタスクである。
プロットイベント間の因果関係は、ストーリーの認識とプロットのコヒーレンスを高めると考えられている。
本研究では,コモンセンス推論から推定される因果関係として,ソフト因果関係の概念を導入する。
C2POは、この概念をCausal, Commonsense Plot Orderingを通じて運用する物語生成のアプローチである。
人間の参加型プロトコルを用いて,異なる常識推論推論と帰納的バイアスを持つベースラインシステムに対して,認識されたストーリー品質におけるソフト因果関係の役割を判断するシステムを評価する。
これらの研究を通じて、ストーリーテリングジャンルにおけるコモンセンス規範の変化がストーリー品質の知覚にどのように影響するかを考察する。
関連論文リスト
- Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
本稿では,一貫した接地的・中核的な特徴を持つ視覚的ストーリーを予測できる最初のモデルを提案する。
我々のモデルは、広く使われているVISTベンチマークの上に構築された新しいデータセットに基づいて微調整されています。
また、物語における文字の豊かさとコア参照を測定するための新しい評価指標を提案する。
論文 参考訳(メタデータ) (2024-09-20T14:56:33Z) - SCO-VIST: Social Interaction Commonsense Knowledge-based Visual
Storytelling [12.560014305032437]
本稿では、画像シーケンスをオブジェクトと関係を持つグラフとして表現するフレームワークであるSCO-VISTを紹介する。
SCO-VIST はこのグラフをプロットポイントを表し、意味的および発生に基づくエッジウェイトを持つプロットポイント間のブリッジを生成する。
この重み付きストーリーグラフは、Floyd-Warshallのアルゴリズムを用いて一連のイベントでストーリーラインを生成する。
論文 参考訳(メタデータ) (2024-02-01T04:09:17Z) - DeltaScore: Fine-Grained Story Evaluation with Perturbations [69.33536214124878]
DELTASCOREは,ニュアンスストーリーの側面の評価に摂動技術を用いた新しい手法である。
私たちの中心的な命題は、物語が特定の側面(例えば、流感)で興奮する程度は、特定の摂動に対するその感受性の大きさと相関している、と仮定している。
事前学習言語モデルを用いて,前摂動状態と後摂動状態の確率差を計算することにより,アスペクトの品質を測定する。
論文 参考訳(メタデータ) (2023-03-15T23:45:54Z) - Neural Story Planning [8.600049807193413]
本稿では,ニューラル言語モデルと因果計画を統合したストーリープロット生成手法を提案する。
我々のシステムは、物語における出来事の前提条件を推測し、その条件が真実になるイベントを推定する。
その結果,提案手法は複数の強基線よりもコヒーレントなプロットラインを生成することがわかった。
論文 参考訳(メタデータ) (2022-12-16T21:29:41Z) - Persona-Guided Planning for Controlling the Protagonist's Persona in
Story Generation [71.24817035071176]
本研究では,ペルソナとイベントの関係を明示的にモデル化する計画ベース生成モデルCONPERを提案する。
自動評価と手動評価の両方の結果から、CONPERはより一貫性のあるペルソナ制御可能なストーリーを生成するために最先端のベースラインより優れていることが示されている。
論文 参考訳(メタデータ) (2022-04-22T13:45:02Z) - Computational Lens on Cognition: Study Of Autobiographical Versus
Imagined Stories With Large-Scale Language Models [95.88620740809004]
GPT-3を用いた自伝的物語と想像的物語における出来事の物語の流れの相違について検討した。
想像された物語は自伝的物語よりも逐次性が高いことがわかった。
想像された物語と比較すると、自伝的な物語は、最初の人物に関連するより具体的な言葉と単語を含んでいる。
論文 参考訳(メタデータ) (2022-01-07T20:10:47Z) - Consistency and Coherency Enhanced Story Generation [35.08911595854691]
生成したストーリーの一貫性と一貫性を高めるための2段階生成フレームワークを提案する。
第1段は物語の筋書きや出来事を描いた物語の輪郭を整理し、第2段は完全な物語へと輪郭を広げることである。
さらに、コア参照監視信号は、コア参照エラーを低減し、コア参照一貫性を向上させるために組み込まれている。
論文 参考訳(メタデータ) (2020-10-17T16:40:37Z) - Once Upon A Time In Visualization: Understanding the Use of Textual
Narratives for Causality [21.67542584041709]
因果性ビジュアライゼーションは、イベントの時間的連鎖を理解するのに役立つ。
しかし、これらのイベントシーケンスの規模と複雑さが大きくなるにつれて、これらの視覚化でさえ圧倒的に利用できなくなる。
本稿では、因果性可視化を強化するためのデータ駆動型ストーリーテリング手法として、テキスト物語の利用を提案する。
論文 参考訳(メタデータ) (2020-09-06T05:46:24Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
PlotMachinesは、動的プロット状態を追跡することによってアウトラインをコヒーレントなストーリーに変換することを学習する、ニューラルな物語モデルである。
さらに,PlotMachinesを高レベルな談話構造で強化し,モデルが物語の異なる部分に対応する筆記スタイルを学習できるようにした。
論文 参考訳(メタデータ) (2020-04-30T17:16:31Z) - A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation [98.25464306634758]
本稿では,外部知識ベースからのコモンセンス知識を利用して,合理的なストーリーを生成することを提案する。
我々は,真と偽のストーリーを識別するための差別的目的を組み合わせたマルチタスク学習を採用している。
我々のモデルは、特に論理学とグローバルコヒーレンスの観点から、最先端のベースラインよりも合理的なストーリーを生成することができる。
論文 参考訳(メタデータ) (2020-01-15T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。