Embedded Blockchains: A Synthesis of Blockchains, Spread Spectrum Watermarking, Perceptual Hashing & Digital Signatures
- URL: http://arxiv.org/abs/2009.00951v5
- Date: Mon, 25 Nov 2024 23:16:37 GMT
- Title: Embedded Blockchains: A Synthesis of Blockchains, Spread Spectrum Watermarking, Perceptual Hashing & Digital Signatures
- Authors: Sam Blake,
- Abstract summary: We introduce a scheme for detecting manipulated audio and video.
The scheme is a synthesis of blockchains, encrypted spread spectrum watermarks, perceptual hashing and digital signatures.
- Score: 0.0
- License:
- Abstract: In this paper we introduce a scheme for detecting manipulated audio and video. The scheme is a synthesis of blockchains, encrypted spread spectrum watermarks, perceptual hashing and digital signatures, which we call an Embedded Blockchain. Within this scheme, we use the blockchain for its data structure of a cryptographically linked list, cryptographic hashing for absolute comparisons, perceptual hashing for flexible comparisons, digital signatures for proof of ownership, and encrypted spread spectrum watermarking to embed the blockchain into the background noise of the media. So each media recording has its own unique blockchain, with each block holding information describing the media segment. The problem of verifying the integrity of the media is recast to traversing the blockchain, block-by-block, and segment-by-segment of the media. If any chain is broken, the difference in the computed and extracted perceptual hash is used to estimate the level of manipulation.
Related papers
- BlockFound: Customized blockchain foundation model for anomaly detection [47.04595143348698]
BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
arXiv Detail & Related papers (2024-10-05T05:11:34Z) - The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Towards post-quantum blockchain: A review on blockchain cryptography
resistant to quantum computing attacks [0.0]
This article studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs.
It provides comparisons on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains.
arXiv Detail & Related papers (2024-02-01T17:29:07Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Analysis of Arbitrary Content on Blockchain-Based Systems using BigQuery [0.0]
We develop and apply a cloud-based approach for quickly discovering and classifying content on public blockchains.
Our method can be adapted to different blockchain systems and offers insights into content-related usage patterns and potential cases of abuse.
To the best of our knowledge, the presented study is the first to systematically analyze non-financial content stored on the blockchain.
arXiv Detail & Related papers (2022-03-17T15:12:38Z) - Quantum-resistance in blockchain networks [46.63333997460008]
This paper describes the work carried out by the Inter-American Development Bank, the IDB Lab, LACChain, Quantum Computing (CQC), and Tecnologico de Monterrey to identify and eliminate quantum threats in blockchain networks.
The advent of quantum computing threatens internet protocols and blockchain networks because they utilize non-quantum resistant cryptographic algorithms.
arXiv Detail & Related papers (2021-06-11T23:39:25Z) - Quantum Multi-Solution Bernoulli Search with Applications to Bitcoin's
Post-Quantum Security [67.06003361150228]
A proof of work (PoW) is an important cryptographic construct enabling a party to convince others that they invested some effort in solving a computational task.
In this work, we examine the hardness of finding such chain of PoWs against quantum strategies.
We prove that the chain of PoWs problem reduces to a problem we call multi-solution Bernoulli search, for which we establish its quantum query complexity.
arXiv Detail & Related papers (2020-12-30T18:03:56Z) - A Practical Blockchain Framework using Image Hashing for Image
Authentication [9.080472817672264]
Image authentication focuses on investigating and maintaining the integrity of images.
Image hashing is a technique used to calculate how similar two different images are.
This work shows that blockchain can be a suitable approach for authenticating images.
arXiv Detail & Related papers (2020-04-15T02:57:32Z) - Assuring the Integrity of Videos from Wireless-based IoT Devices using
Blockchain [0.0]
We utilize the technology to verify the authenticity of a video captured by an IoT device for forensic investigation purposes.
Theproposed approach computes the hash of the video frames before they leave the IoT device and are transferred to a remote basestation.
The hash is then stored on multiple nodes on a permissioned blockchain platform.
Incase the video is modified, the discrepancy will be detected byinvestigating the previously stored hash on the blockchain andcomparing it with the hash of the existing frame in question.
arXiv Detail & Related papers (2020-02-28T23:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.