BlockFound: Customized blockchain foundation model for anomaly detection
- URL: http://arxiv.org/abs/2410.04039v3
- Date: Fri, 18 Oct 2024 04:05:06 GMT
- Title: BlockFound: Customized blockchain foundation model for anomaly detection
- Authors: Jiahao Yu, Xian Wu, Hao Liu, Wenbo Guo, Xinyu Xing,
- Abstract summary: BlockFound is a customized foundation model for anomaly blockchain transaction detection.
We introduce a series of customized designs to model the unique data structure of blockchain transactions.
BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy.
- Score: 47.04595143348698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose BlockFound, a customized foundation model for anomaly blockchain transaction detection. Unlike existing methods that rely on rule-based systems or directly apply off-the-shelf large language models, BlockFound introduces a series of customized designs to model the unique data structure of blockchain transactions. First, a blockchain transaction is multi-modal, containing blockchain-specific tokens, texts, and numbers. We design a modularized tokenizer to handle these multi-modal inputs, balancing the information across different modalities. Second, we design a customized mask language learning mechanism for pretraining with RoPE embedding and FlashAttention for handling longer sequences. After training the foundation model, we further design a novel detection method for anomaly detection. Extensive evaluations on Ethereum and Solana transactions demonstrate BlockFound's exceptional capability in anomaly detection while maintaining a low false positive rate. Remarkably, BlockFound is the only method that successfully detects anomalous transactions on Solana with high accuracy, whereas all other approaches achieved very low or zero detection recall scores. This work not only provides new foundation models for blockchain but also sets a new benchmark for applying LLMs in blockchain data.
Related papers
- The Latency Price of Threshold Cryptosystem in Blockchains [52.359230560289745]
We study the interplay between threshold cryptography and a class of blockchains that use Byzantine-fault tolerant (BFT) consensus protocols.
Existing approaches for threshold cryptosystems introduce a latency overhead of at least one message delay for running the threshold cryptographic protocol.
We propose a mechanism to eliminate this overhead for blockchain-native threshold cryptosystems with tight thresholds.
arXiv Detail & Related papers (2024-07-16T20:53:04Z) - What Blocks My Blockchain's Throughput? Developing a Generalizable Approach for Identifying Bottlenecks in Permissioned Blockchains [0.3495246564946556]
We develop a more unified and graphical approach for identifying bottlenecks in permissioned blockchains.
We conduct in-depth case studies on Hyperledger Fabric and Quorum, two widely used permissioned blockchains.
arXiv Detail & Related papers (2024-04-02T13:00:50Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Detecting Anomalies in Blockchain Transactions using Machine Learning
Classifiers and Explainability Analysis [4.456941846147711]
This study integrates XAI techniques and anomaly rules into tree-based ensemble classifiers for detecting anomalous Bitcoin transactions.
We introduce an under-sampling algorithm named XGBCLUS, designed to balance anomalous and non-anomalous transaction data.
Our proposed ensemble classifiers outperform traditional single tree-based machine learning classifiers in terms of accuracy, TPR, and FPR scores.
arXiv Detail & Related papers (2024-01-07T16:01:51Z) - Collaborative Learning Framework to Detect Attacks in Transactions and Smart Contracts [26.70294159598272]
This paper presents a novel collaborative learning framework designed to detect attacks in blockchain transactions and smart contracts.
Our framework exhibits the capability to classify various types of blockchain attacks, including intricate attacks at the machine code level.
Our framework achieves a detection accuracy of approximately 94% through extensive simulations and 91% in real-time experiments with a throughput of over 2,150 transactions per second.
arXiv Detail & Related papers (2023-08-30T07:17:20Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Blockchain Framework for Artificial Intelligence Computation [1.8148198154149393]
We design the block verification and consensus mechanism as a deep reinforcement-learning process.
Our method is used to design the next generation of public blockchain networks.
arXiv Detail & Related papers (2022-02-23T01:44:27Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
We propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block.
Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field.
We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video.
arXiv Detail & Related papers (2021-11-17T13:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.