Fairness in the Eyes of the Data: Certifying Machine-Learning Models
- URL: http://arxiv.org/abs/2009.01534v3
- Date: Fri, 25 Jun 2021 07:57:06 GMT
- Title: Fairness in the Eyes of the Data: Certifying Machine-Learning Models
- Authors: Shahar Segal, Yossi Adi, Benny Pinkas, Carsten Baum, Chaya Ganesh,
Joseph Keshet
- Abstract summary: We present a framework that allows to certify the fairness degree of a model based on an interactive and privacy-preserving test.
We tackle two scenarios, where either the test data is privately available only to the tester or is publicly known in advance, even to the model creator.
We provide a cryptographic technique to automate fairness testing and certified inference with only black-box access to the model at hand while hiding the participants' sensitive data.
- Score: 38.09830406613629
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a framework that allows to certify the fairness degree of a model
based on an interactive and privacy-preserving test. The framework verifies any
trained model, regardless of its training process and architecture. Thus, it
allows us to evaluate any deep learning model on multiple fairness definitions
empirically. We tackle two scenarios, where either the test data is privately
available only to the tester or is publicly known in advance, even to the model
creator. We investigate the soundness of the proposed approach using
theoretical analysis and present statistical guarantees for the interactive
test. Finally, we provide a cryptographic technique to automate fairness
testing and certified inference with only black-box access to the model at hand
while hiding the participants' sensitive data.
Related papers
- FullCert: Deterministic End-to-End Certification for Training and Inference of Neural Networks [62.897993591443594]
FullCert is the first end-to-end certifier with sound, deterministic bounds.
We experimentally demonstrate FullCert's feasibility on two datasets.
arXiv Detail & Related papers (2024-06-17T13:23:52Z) - Verifiable evaluations of machine learning models using zkSNARKs [40.538081946945596]
This work presents a method of verifiable model evaluation using model inference through zkSNARKs.
The resulting zero-knowledge computational proofs of model outputs over datasets can be packaged into verifiable evaluation attestations.
For the first time, we demonstrate this across a sample of real-world models and highlight key challenges and design solutions.
arXiv Detail & Related papers (2024-02-05T02:21:11Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
In deep learning applications such as online content recommendation and stock market analysis, models use historical data to make predictions.
We derive robustness certificates for models that use a fixed-size sliding window over the input stream.
Our guarantees hold for the average model performance across the entire stream and are independent of stream size, making them suitable for large data streams.
arXiv Detail & Related papers (2023-03-28T21:02:35Z) - Zero-shot Model Diagnosis [80.36063332820568]
A common approach to evaluate deep learning models is to build a labeled test set with attributes of interest and assess how well it performs.
This paper argues the case that Zero-shot Model Diagnosis (ZOOM) is possible without the need for a test set nor labeling.
arXiv Detail & Related papers (2023-03-27T17:59:33Z) - Provable Fairness for Neural Network Models using Formal Verification [10.90121002896312]
We propose techniques to emphprove fairness using recently developed formal methods that verify properties of neural network models.
We show that through proper training, we can reduce unfairness by an average of 65.4% at a cost of less than 1% in AUC score.
arXiv Detail & Related papers (2022-12-16T16:54:37Z) - fAux: Testing Individual Fairness via Gradient Alignment [2.5329739965085785]
We describe a new approach for testing individual fairness that does not have either requirement.
We show that the proposed method effectively identifies discrimination on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-10-10T21:27:20Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Data Synthesis for Testing Black-Box Machine Learning Models [2.3800397174740984]
The increasing usage of machine learning models raises the question of the reliability of these models.
In this paper, we provide a framework for automated test data synthesis to test black-box ML/DL models.
arXiv Detail & Related papers (2021-11-03T12:00:30Z) - Improving Label Quality by Jointly Modeling Items and Annotators [68.8204255655161]
We propose a fully Bayesian framework for learning ground truth labels from noisy annotators.
Our framework ensures scalability by factoring a generative, Bayesian soft clustering model over label distributions into the classic David and Skene joint annotator-data model.
arXiv Detail & Related papers (2021-06-20T02:15:20Z) - Confidence Estimation via Auxiliary Models [47.08749569008467]
We introduce a novel target criterion for model confidence, namely the true class probability ( TCP)
We show that TCP offers better properties for confidence estimation than standard maximum class probability (MCP)
arXiv Detail & Related papers (2020-12-11T17:21:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.