Verifiable evaluations of machine learning models using zkSNARKs
- URL: http://arxiv.org/abs/2402.02675v2
- Date: Wed, 22 May 2024 17:36:47 GMT
- Title: Verifiable evaluations of machine learning models using zkSNARKs
- Authors: Tobin South, Alexander Camuto, Shrey Jain, Shayla Nguyen, Robert Mahari, Christian Paquin, Jason Morton, Alex 'Sandy' Pentland,
- Abstract summary: This work presents a method of verifiable model evaluation using model inference through zkSNARKs.
The resulting zero-knowledge computational proofs of model outputs over datasets can be packaged into verifiable evaluation attestations.
For the first time, we demonstrate this across a sample of real-world models and highlight key challenges and design solutions.
- Score: 40.538081946945596
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In a world of increasing closed-source commercial machine learning models, model evaluations from developers must be taken at face value. These benchmark results-whether over task accuracy, bias evaluations, or safety checks-are traditionally impossible to verify by a model end-user without the costly or impossible process of re-performing the benchmark on black-box model outputs. This work presents a method of verifiable model evaluation using model inference through zkSNARKs. The resulting zero-knowledge computational proofs of model outputs over datasets can be packaged into verifiable evaluation attestations showing that models with fixed private weights achieve stated performance or fairness metrics over public inputs. We present a flexible proving system that enables verifiable attestations to be performed on any standard neural network model with varying compute requirements. For the first time, we demonstrate this across a sample of real-world models and highlight key challenges and design solutions. This presents a new transparency paradigm in the verifiable evaluation of private models.
Related papers
- Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - fairml: A Statistician's Take on Fair Machine Learning Modelling [0.0]
We describe the fairml package which implements our previous work (Scutari, Panero, and Proissl 2022) and related models in the literature.
fairml is designed around classical statistical models and penalised regression results.
The constraint used to enforce fairness is to model estimation, making it possible to mix-and-match the desired model family and fairness definition for each application.
arXiv Detail & Related papers (2023-05-03T09:59:53Z) - GMValuator: Similarity-based Data Valuation for Generative Models [41.76259565672285]
We introduce Generative Model Valuator (GMValuator), the first training-free and model-agnostic approach to provide data valuation for generation tasks.
GMValuator is extensively evaluated on various datasets and generative architectures to demonstrate its effectiveness.
arXiv Detail & Related papers (2023-04-21T02:02:02Z) - Provable Robustness for Streaming Models with a Sliding Window [51.85182389861261]
In deep learning applications such as online content recommendation and stock market analysis, models use historical data to make predictions.
We derive robustness certificates for models that use a fixed-size sliding window over the input stream.
Our guarantees hold for the average model performance across the entire stream and are independent of stream size, making them suitable for large data streams.
arXiv Detail & Related papers (2023-03-28T21:02:35Z) - Rigorous Assessment of Model Inference Accuracy using Language
Cardinality [5.584832154027001]
We develop a systematic approach that minimizes bias and uncertainty in model accuracy assessment by replacing statistical estimation with deterministic accuracy measures.
We experimentally demonstrate the consistency and applicability of our approach by assessing the accuracy of models inferred by state-of-the-art inference tools.
arXiv Detail & Related papers (2022-11-29T21:03:26Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
We analyze a set of existing bias features and demonstrate there is no single model that works best for all the cases.
By choosing an appropriate bias model, we can obtain a better robustness result than baselines with a more sophisticated model design.
arXiv Detail & Related papers (2022-10-28T17:52:10Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
We conduct a crowdsourcing study, where participants interact with deception detection models that have been trained to distinguish between genuine and fake hotel reviews.
We observe that for a linear bag-of-words model, participants with access to the feature coefficients during training are able to cause a larger reduction in model confidence in the testing phase when compared to the no-explanation control.
arXiv Detail & Related papers (2021-12-17T18:29:56Z) - Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow [14.422129911404472]
Bellman aims to fill this gap and introduces the first thoroughly designed and tested model-based RL toolbox.
Our modular approach enables to combine a wide range of environment models with generic model-based agent classes that recover state-of-the-art algorithms.
arXiv Detail & Related papers (2021-03-26T11:32:27Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z) - Fairness in the Eyes of the Data: Certifying Machine-Learning Models [38.09830406613629]
We present a framework that allows to certify the fairness degree of a model based on an interactive and privacy-preserving test.
We tackle two scenarios, where either the test data is privately available only to the tester or is publicly known in advance, even to the model creator.
We provide a cryptographic technique to automate fairness testing and certified inference with only black-box access to the model at hand while hiding the participants' sensitive data.
arXiv Detail & Related papers (2020-09-03T09:22:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.