Fundus Image Analysis for Age Related Macular Degeneration: ADAM-2020
Challenge Report
- URL: http://arxiv.org/abs/2009.01548v1
- Date: Thu, 3 Sep 2020 09:46:32 GMT
- Title: Fundus Image Analysis for Age Related Macular Degeneration: ADAM-2020
Challenge Report
- Authors: Sharath M Shankaranarayana
- Abstract summary: Age related macular degeneration (AMD) is one of the major causes for blindness in the elderly population.
We propose deep learning based methods for retinal analysis using color fundus images for computer aided diagnosis of AMD.
- Score: 0.685316573653194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Age related macular degeneration (AMD) is one of the major causes for
blindness in the elderly population. In this report, we propose deep learning
based methods for retinal analysis using color fundus images for computer aided
diagnosis of AMD. We leverage the recent state of the art deep networks for
building a single fundus image based AMD classification pipeline. We also
propose methods for the other directly relevant and auxiliary tasks such as
lesions detection and segmentation, fovea detection and optic disc
segmentation. We propose the use of generative adversarial networks (GANs) for
the tasks of segmentation and detection. We also propose a novel method of
fovea detection using GANs.
Related papers
- Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images [42.75763279888966]
We present a novel PolarNet+ that uses retinal optical coherence tomography angiography ( OCTA) to discriminate early-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) subjects from controls.
Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation.
We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction.
arXiv Detail & Related papers (2024-08-09T15:10:34Z) - Polar-Net: A Clinical-Friendly Model for Alzheimer's Disease Detection
in OCTA Images [53.235117594102675]
Optical Coherence Tomography Angiography is a promising tool for detecting Alzheimer's disease (AD) by imaging the retinal microvasculature.
We propose a novel deep-learning framework called Polar-Net to provide interpretable results and leverage clinical prior knowledge.
We show that Polar-Net outperforms existing state-of-the-art methods and provides more valuable pathological evidence for the association between retinal vascular changes and AD.
arXiv Detail & Related papers (2023-11-10T11:49:49Z) - Segmentation-guided Domain Adaptation and Data Harmonization of
Multi-device Retinal Optical Coherence Tomography using Cycle-Consistent
Generative Adversarial Networks [2.968191199408213]
This paper proposes a segmentation-guided domain-adaptation method to adapt images from multiple devices into single image domain.
It avoids the time consumption of manual labelling for the upcoming new dataset and the re-training of the existing network.
arXiv Detail & Related papers (2022-08-31T05:06:00Z) - A Deep Learning Approach for the Segmentation of Electroencephalography
Data in Eye Tracking Applications [56.458448869572294]
We introduce DETRtime, a novel framework for time-series segmentation of EEG data.
Our end-to-end deep learning-based framework brings advances in Computer Vision to the forefront.
Our model generalizes well in the task of EEG sleep stage segmentation.
arXiv Detail & Related papers (2022-06-17T10:17:24Z) - Improving AMD diagnosis by the simultaneous identification of associated
retinal lesions [9.707114016577716]
Age-related Macular Degeneration (AMD) is the predominant cause of blindness in developed countries.
We propose a novel approach based on CNNs that simultaneously performs AMD diagnosis and the classification of its potential lesions.
arXiv Detail & Related papers (2022-05-22T17:52:02Z) - JOINED : Prior Guided Multi-task Learning for Joint Optic Disc/Cup
Segmentation and Fovea Detection [1.2250035750661867]
We present a novel method, named JOINED, for prior guided multi-task learning for joint OD/OC segmentation and fovea detection.
Our proposed JOINED pipeline consists of a coarse stage and a fine stage.
Experimental results reveal that our proposed JOINED outperforms existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-01T13:47:48Z) - ADAM Challenge: Detecting Age-related Macular Degeneration from Fundus
Images [44.212866865895485]
We set up the Automatic Detection challenge on Age-related Macular degeneration (ADAM) for the first time, held as a satellite event of the I SBI 2020 conference.
ADAM challenge consists of four tasks which cover the main topics in detecting AMD from fundus images.
This paper introduces the challenge, dataset, and evaluation methods, as well as summarizes the methods and analyzes the results of the participating teams of each task.
arXiv Detail & Related papers (2022-02-16T10:49:49Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
We propose a new framework called Ventral-Dorsal Networks (VDNets)
Inspired by the structure of the human visual system, we propose the integration of a "Ventral Network" and a "Dorsal Network"
Our experimental results reveal that the proposed method outperforms state-of-the-art object detection approaches.
arXiv Detail & Related papers (2020-05-15T23:57:36Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.