DESC: Domain Adaptation for Depth Estimation via Semantic Consistency
- URL: http://arxiv.org/abs/2009.01579v1
- Date: Thu, 3 Sep 2020 10:54:05 GMT
- Title: DESC: Domain Adaptation for Depth Estimation via Semantic Consistency
- Authors: Adrian Lopez-Rodriguez, Krystian Mikolajczyk
- Abstract summary: We propose a domain adaptation approach to train a monocular depth estimation model.
We bridge the domain gap by leveraging semantic predictions and low-level edge features.
Our approach is evaluated on standard domain adaptation benchmarks for monocular depth estimation.
- Score: 24.13837264978472
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate real depth annotations are difficult to acquire, needing the use of
special devices such as a LiDAR sensor. Self-supervised methods try to overcome
this problem by processing video or stereo sequences, which may not always be
available. Instead, in this paper, we propose a domain adaptation approach to
train a monocular depth estimation model using a fully-annotated source dataset
and a non-annotated target dataset. We bridge the domain gap by leveraging
semantic predictions and low-level edge features to provide guidance for the
target domain. We enforce consistency between the main model and a second model
trained with semantic segmentation and edge maps, and introduce priors in the
form of instance heights. Our approach is evaluated on standard domain
adaptation benchmarks for monocular depth estimation and show consistent
improvement upon the state-of-the-art.
Related papers
- TanDepth: Leveraging Global DEMs for Metric Monocular Depth Estimation in UAVs [5.6168844664788855]
This work presents TanDepth, a practical, online scale recovery method for obtaining metric depth results from relative estimations at inference-time.
Tailored for Unmanned Aerial Vehicle (UAV) applications, our method leverages sparse measurements from Global Digital Elevation Models (GDEM) by projecting them to the camera view.
An adaptation to the Cloth Simulation Filter is presented, which allows selecting ground points from the estimated depth map to then correlate with the projected reference points.
arXiv Detail & Related papers (2024-09-08T15:54:43Z) - Consistency Regularisation for Unsupervised Domain Adaptation in Monocular Depth Estimation [15.285720572043678]
We formulate unsupervised domain adaptation for monocular depth estimation as a consistency-based semi-supervised learning problem.
We introduce a pairwise loss function that regularises predictions on the source domain while enforcing consistency across multiple augmented views.
In our experiments, we rely on the standard depth estimation benchmarks KITTI and NYUv2 to demonstrate state-of-the-art results.
arXiv Detail & Related papers (2024-05-27T23:32:06Z) - Progressive Conservative Adaptation for Evolving Target Domains [76.9274842289221]
Conventional domain adaptation typically transfers knowledge from a source domain to a stationary target domain.
Restoring and adapting to such target data results in escalating computational and resource consumption over time.
We propose a simple yet effective approach, termed progressive conservative adaptation (PCAda)
arXiv Detail & Related papers (2024-02-07T04:11:25Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - Unsupervised Domain Adaptation for Semantic Segmentation via Low-level
Edge Information Transfer [27.64947077788111]
Unsupervised domain adaptation for semantic segmentation aims to make models trained on synthetic data adapt to real images.
Previous feature-level adversarial learning methods only consider adapting models on the high-level semantic features.
We present the first attempt at explicitly using low-level edge information, which has a small inter-domain gap, to guide the transfer of semantic information.
arXiv Detail & Related papers (2021-09-18T11:51:31Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
arXiv Detail & Related papers (2021-06-18T03:15:25Z) - Domain Adaptive Semantic Segmentation with Self-Supervised Depth
Estimation [84.34227665232281]
Domain adaptation for semantic segmentation aims to improve the model performance in the presence of a distribution shift between source and target domain.
We leverage the guidance from self-supervised depth estimation, which is available on both domains, to bridge the domain gap.
We demonstrate the effectiveness of our proposed approach on the benchmark tasks SYNTHIA-to-Cityscapes and GTA-to-Cityscapes.
arXiv Detail & Related papers (2021-04-28T07:47:36Z) - Domain Adaptive Monocular Depth Estimation With Semantic Information [13.387521845596149]
We propose an adversarial training model that leverages semantic information to narrow the domain gap.
The proposed compact model achieves state-of-the-art performance comparable to complex latest models.
arXiv Detail & Related papers (2021-04-12T18:50:41Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.