A Wholistic View of Continual Learning with Deep Neural Networks:
Forgotten Lessons and the Bridge to Active and Open World Learning
- URL: http://arxiv.org/abs/2009.01797v2
- Date: Fri, 11 Sep 2020 13:57:41 GMT
- Title: A Wholistic View of Continual Learning with Deep Neural Networks:
Forgotten Lessons and the Bridge to Active and Open World Learning
- Authors: Martin Mundt, Yong Won Hong, Iuliia Pliushch, Visvanathan Ramesh
- Abstract summary: We argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, are frequently overlooked in the deep learning era.
Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework.
- Score: 8.188575923130662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current deep learning research is dominated by benchmark evaluation. A method
is regarded as favorable if it empirically performs well on the dedicated test
set. This mentality is seamlessly reflected in the resurfacing area of
continual learning, where consecutively arriving sets of benchmark data are
investigated. The core challenge is framed as protecting previously acquired
representations from being catastrophically forgotten due to the iterative
parameter updates. However, comparison of individual methods is nevertheless
treated in isolation from real world application and typically judged by
monitoring accumulated test set performance. The closed world assumption
remains predominant. It is assumed that during deployment a model is guaranteed
to encounter data that stems from the same distribution as used for training.
This poses a massive challenge as neural networks are well known to provide
overconfident false predictions on unknown instances and break down in the face
of corrupted data. In this work we argue that notable lessons from open set
recognition, the identification of statistically deviating data outside of the
observed dataset, and the adjacent field of active learning, where data is
incrementally queried such that the expected performance gain is maximized, are
frequently overlooked in the deep learning era. Based on these forgotten
lessons, we propose a consolidated view to bridge continual learning, active
learning and open set recognition in deep neural networks. Our results show
that this not only benefits each individual paradigm, but highlights the
natural synergies in a common framework. We empirically demonstrate
improvements when alleviating catastrophic forgetting, querying data in active
learning, selecting task orders, while exhibiting robust open world application
where previously proposed methods fail.
Related papers
- RanDumb: A Simple Approach that Questions the Efficacy of Continual Representation Learning [68.42776779425978]
We show that existing online continually trained deep networks produce inferior representations compared to a simple pre-defined random transforms.
We then train a simple linear classifier on top without storing any exemplars, processing one sample at a time in an online continual learning setting.
Our study reveals the significant limitations of representation learning, particularly in low-exemplar and online continual learning scenarios.
arXiv Detail & Related papers (2024-02-13T22:07:29Z) - LORD: Leveraging Open-Set Recognition with Unknown Data [10.200937444995944]
LORD is a framework to Leverage Open-set Recognition by exploiting unknown data.
We identify three model-agnostic training strategies that exploit background data and applied them to well-established classifiers.
arXiv Detail & Related papers (2023-08-24T06:12:41Z) - Uncertainty-Aware Bootstrap Learning for Joint Extraction on
Distantly-Supervised Data [36.54640096189285]
bootstrap learning is motivated by the intuition that the higher uncertainty of an instance, the more likely the model confidence is inconsistent with the ground truths.
We first explore instance-level data uncertainty to create an initial high-confident examples.
During bootstrap learning, we propose self-ensembling as a regularizer to alleviate inter-model uncertainty produced by noisy labels.
arXiv Detail & Related papers (2023-05-05T20:06:11Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
We introduce a novel approach for deepfake detection, which considers the reconstruction and classification tasks simultaneously.
This method shares the information learned by one task with the other, which focuses on a different aspect other existing works rarely consider.
Our method achieves state-of-the-art performance on three commonly-used datasets.
arXiv Detail & Related papers (2022-11-24T05:44:26Z) - Masked prediction tasks: a parameter identifiability view [49.533046139235466]
We focus on the widely used self-supervised learning method of predicting masked tokens.
We show that there is a rich landscape of possibilities, out of which some prediction tasks yield identifiability, while others do not.
arXiv Detail & Related papers (2022-02-18T17:09:32Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
Replay in neural networks involves training on sequential data with memorized samples, which counteracts forgetting of previous behavior caused by non-stationarity.
We present a method where these auxiliary samples are generated on the fly, given only the model that is being trained for the assessed objective.
Instead the implicit memory of learned samples within the assessed model itself is exploited.
arXiv Detail & Related papers (2020-06-22T15:07:06Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.