論文の概要: Federated Learning for Breast Density Classification: A Real-World
Implementation
- arxiv url: http://arxiv.org/abs/2009.01871v3
- Date: Tue, 20 Oct 2020 13:46:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 08:02:07.709818
- Title: Federated Learning for Breast Density Classification: A Real-World
Implementation
- Title(参考訳): 乳房密度分類のためのフェデレーション学習:実世界実装
- Authors: Holger R. Roth, Ken Chang, Praveer Singh, Nir Neumark, Wenqi Li,
Vikash Gupta, Sharut Gupta, Liangqiong Qu, Alvin Ihsani, Bernardo C. Bizzo,
Yuhong Wen, Varun Buch, Meesam Shah, Felipe Kitamura, Matheus Mendon\c{c}a,
Vitor Lavor, Ahmed Harouni, Colin Compas, Jesse Tetreault, Prerna Dogra, Yan
Cheng, Selnur Erdal, Richard White, Behrooz Hashemian, Thomas Schultz, Miao
Zhang, Adam McCarthy, B. Min Yun, Elshaimaa Sharaf, Katharina V. Hoebel, Jay
B. Patel, Bryan Chen, Sean Ko, Evan Leibovitz, Etta D. Pisano, Laura Coombs,
Daguang Xu, Keith J. Dreyer, Ittai Dayan, Ram C. Naidu, Mona Flores, Daniel
Rubin, Jayashree Kalpathy-Cramer
- Abstract要約: 世界中の7つの臨床機関が、乳房画像・報告・データシステム(BI-RADS)に基づく乳房密度分類モデルのトレーニングに参加した。
すべてのサイトからデータセットにかなりの違いがあるにも関わらず、フェデレーションにおけるAIモデルのトレーニングに成功できることが示されています。
その結果、FLを用いて訓練されたモデルは、研究所のローカルデータだけで訓練されたモデルよりも平均6.3%良い結果が得られた。
- 参考スコア(独自算出の注目度): 19.03378677235258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building robust deep learning-based models requires large quantities of
diverse training data. In this study, we investigate the use of federated
learning (FL) to build medical imaging classification models in a real-world
collaborative setting. Seven clinical institutions from across the world joined
this FL effort to train a model for breast density classification based on
Breast Imaging, Reporting & Data System (BI-RADS). We show that despite
substantial differences among the datasets from all sites (mammography system,
class distribution, and data set size) and without centralizing data, we can
successfully train AI models in federation. The results show that models
trained using FL perform 6.3% on average better than their counterparts trained
on an institute's local data alone. Furthermore, we show a 45.8% relative
improvement in the models' generalizability when evaluated on the other
participating sites' testing data.
- Abstract(参考訳): 堅牢なディープラーニングベースのモデルを構築するには、大量の多様なトレーニングデータが必要です。
本研究では,実世界の協調環境での医用画像分類モデル構築におけるフェデレーション学習(fl)の利用について検討する。
世界中の7つの臨床機関がこのFLに参加し、乳房画像・報告・データシステム(BI-RADS)に基づく乳房密度分類モデルのトレーニングを行った。
すべてのサイト(マンモグラフィーシステム,クラス分布,データセットサイズ)のデータセットにかなりの違いがあるにも関わらず,集中的なデータがないため,フェデレーションにおけるAIモデルのトレーニングに成功していることを示す。
その結果、FLを用いて訓練されたモデルは、研究所のローカルデータだけで訓練されたモデルよりも平均6.3%高い性能を示した。
さらに、他の参加者の試験データから評価した場合、モデルの一般化性は45.8%向上した。
関連論文リスト
- FACMIC: Federated Adaptative CLIP Model for Medical Image Classification [12.166024140377337]
本稿では,CLIPモデルを用いた適応型コントラスト言語画像の分類処理について紹介する。
私たちはCLIP用の軽量で効率的な機能アテンションモジュールを採用し、各クライアントのデータに適した機能を選択します。
本稿では,クライアント間のデータ分散の差異を低減するためのドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2024-10-08T13:24:10Z) - FedLLM-Bench: Realistic Benchmarks for Federated Learning of Large Language Models [48.484485609995986]
フェデレートラーニングにより、複数のパーティがデータを直接共有することなく、協力的に大きな言語モデルをトレーニングできるようになった(FedLLM)。
現在、FedLLMの現実的なデータセットやベンチマークは存在しない。
我々は,8つのトレーニング手法,4つのトレーニングデータセット,6つの評価指標を含むFedLLM-Benchを提案する。
論文 参考訳(メタデータ) (2024-06-07T11:19:30Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
マルチレベル・パーソナライズド・フェデレーション・ラーニング(MuPFL)という革新的パーソナライズド・パーソナライズド・ラーニング・フレームワークを導入する。
MuPFLは3つの重要なモジュールを統合している: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU), Prior Knowledge-assisted Fine-tuning (PKCF)。
様々な実世界のデータセットの実験では、MuPFLは極端に非i.d.と長い尾の条件下であっても、最先端のベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2024-05-10T11:52:53Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
フェデレートラーニング(FL)は、グローバルモデルを協調的にトレーニングする複数のクライアントを含む、人気のある分散ラーニングパラダイムになっています。
データサンプルは通常、現実世界の長い尾の分布に従っており、分散化された長い尾のデータのFLは、貧弱なグローバルモデルをもたらす。
本研究では、局所的な実データとグローバルな勾配のプロトタイプを統合し、局所的なバランスの取れたデータセットを形成する。
論文 参考訳(メタデータ) (2023-01-25T03:18:10Z) - Collaborative Training of Medical Artificial Intelligence Models with
non-uniform Labels [0.07176066267895696]
強力で堅牢なディープラーニングモデルを構築するには、大規模なマルチパーティデータセットによるトレーニングが必要だ。
このようなデータに対する協調学習のためのフレキシブル・フェデレーション・ラーニング(FFL)を提案する。
不均質なラベル付きデータセットを持つことで、FFLベースのトレーニングがパフォーマンスを著しく向上させることを示す。
論文 参考訳(メタデータ) (2022-11-24T13:48:54Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
フェデレートラーニング(Federated Learning, FL)は、医療機関にグローバルモデルにおけるコラボレーションの見通しを提供する分散ラーニング手法である。
本研究では,FLの中間的半言語モデルを生成する適応階層クラスタリング手法について検討する。
本実験は, 分類精度の標準的なFL法と比較して, 不均質分布において有意な性能向上を示した。
論文 参考訳(メタデータ) (2022-07-07T17:25:04Z) - Federated Learning for the Classification of Tumor Infiltrating
Lymphocytes [5.881088147423591]
デジタル化組織断面解析のための深層学習モデルの開発において,フェデレートラーニング(FL)の性能を評価する。
スライド画像全体から抽出した50*50平方ミクロンパッチを用いてディープラーニング分類モデルを訓練した。
論文 参考訳(メタデータ) (2022-03-30T19:10:50Z) - Model-Contrastive Federated Learning [92.9075661456444]
フェデレーションラーニングにより、複数のパーティがローカルデータを伝達することなく、機械学習モデルを共同でトレーニングできます。
MOON:モデルコントラスト連合学習を提案します。
実験の結果,MOONは様々な画像分類タスクにおいて,他の最先端のフェデレーション学習アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2021-03-30T11:16:57Z) - FedH2L: Federated Learning with Model and Statistical Heterogeneity [75.61234545520611]
フェデレートラーニング(FL)は、分散参加者が個々のデータのプライバシを犠牲にすることなく、強力なグローバルモデルを集合的に学習することを可能にする。
我々はFedH2Lを導入し、これはモデルアーキテクチャに非依存であり、参加者間で異なるデータ分散に対して堅牢である。
パラメータや勾配を共有するアプローチとは対照的に、FedH2Lは相互蒸留に依存し、参加者間で共有シードセットの後方のみを分散的に交換する。
論文 参考訳(メタデータ) (2021-01-27T10:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。