論文の概要: Rethinking Graph Regularization for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2009.02027v2
- Date: Sun, 20 Dec 2020 15:52:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 01:41:09.333425
- Title: Rethinking Graph Regularization for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのためのグラフ正規化再考
- Authors: Han Yang and Kaili Ma and James Cheng
- Abstract要約: グラフラプラシア正規化は既存のグラフニューラルネットワーク(GNN)にほとんど恩恵を与えないことを示す。
我々は、伝播正則化(P-reg)と呼ばれるグラフラプラシア正則化の単純だが非自明な変種を提案する。
我々はP-regがノードレベルのタスクとグラフレベルのタスクの両方において既存のGNNモデルの性能を効果的に向上できることを実証した。
- 参考スコア(独自算出の注目度): 21.32758655943999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The graph Laplacian regularization term is usually used in semi-supervised
representation learning to provide graph structure information for a model
$f(X)$. However, with the recent popularity of graph neural networks (GNNs),
directly encoding graph structure $A$ into a model, i.e., $f(A, X)$, has become
the more common approach. While we show that graph Laplacian regularization
brings little-to-no benefit to existing GNNs, and propose a simple but
non-trivial variant of graph Laplacian regularization, called
Propagation-regularization (P-reg), to boost the performance of existing GNN
models. We provide formal analyses to show that P-reg not only infuses extra
information (that is not captured by the traditional graph Laplacian
regularization) into GNNs, but also has the capacity equivalent to an
infinite-depth graph convolutional network. We demonstrate that P-reg can
effectively boost the performance of existing GNN models on both node-level and
graph-level tasks across many different datasets.
- Abstract(参考訳): グラフラプラシア正規化項は通常、モデル$f(X)$のグラフ構造情報を提供する半教師付き表現学習で使用される。
しかし、グラフニューラルネットワーク(gnns)が最近普及したことにより、モデルに直接グラフ構造$a$をエンコードする、すなわち$f(a, x)$がより一般的なアプローチになっている。
グラフのラプラシアン正規化は既存のGNNにはほとんどメリットがないことを示す一方で、既存のGNNモデルの性能を高めるために、P-reg(Propagation-regularization)と呼ばれる単純なグラフのラプラシアン正規化を提案する。
p-reg は gnn に余分な情報(従来のグラフラプラシアン正規化によってキャプチャされない)を注入するだけでなく、無限深さグラフ畳み込みネットワークと同等の容量を持つことを示す形式的解析を提供する。
P-regはノードレベルのタスクとグラフレベルのタスクの両方において、多くの異なるデータセットで既存のGNNモデルの性能を効果的に向上させることができることを示す。
関連論文リスト
- A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
我々は、スペクトル領域の多様体からサンプリングされたグラフ上のGNNの統計的一般化理論を確立するために多様体の視点を取る。
我々はGNNの一般化境界が対数スケールのグラフのサイズとともに線形に減少し、フィルタ関数のスペクトル連続定数とともに線形的に増加することを証明した。
論文 参考訳(メタデータ) (2024-06-07T19:25:02Z) - SizeShiftReg: a Regularization Method for Improving Size-Generalization
in Graph Neural Networks [5.008597638379227]
グラフニューラルネットワーク(GNN)は,グラフ分類のデファクトモデルとなっている。
テストデータへのアクセスを必要とせずに,任意のGNNに適用可能な正規化戦略を提案する。
我々の正規化は、粗い手法を用いてトレーニンググラフのサイズの変化をシミュレートする考え方に基づいている。
論文 参考訳(メタデータ) (2022-07-16T09:50:45Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - Imbalanced Graph Classification via Graph-of-Graph Neural Networks [16.589373163769853]
グラフニューラルネットワーク(GNN)は、グラフの分類ラベルを識別するグラフ表現の学習において、前例のない成功を収めている。
本稿では,グラフ不均衡問題を軽減する新しいフレームワークであるグラフ・オブ・グラフニューラルネットワーク(G$2$GNN)を提案する。
提案したG$2$GNNは,F1-macroとF1-microのスコアにおいて,多くのベースラインを約5%上回る性能を示した。
論文 参考訳(メタデータ) (2021-12-01T02:25:47Z) - IV-GNN : Interval Valued Data Handling Using Graph Neural Network [12.651341660194534]
Graph Neural Network(GNN)は、グラフ上で標準的な機械学習を実行する強力なツールである。
本稿では,新しいGNNモデルであるInterval-ValuedGraph Neural Networkを提案する。
我々のモデルは、任意の可算集合は常に可算集合 $Rn$ の部分集合であるので、既存のモデルよりもはるかに一般である。
論文 参考訳(メタデータ) (2021-11-17T15:37:09Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - GPT-GNN: Generative Pre-Training of Graph Neural Networks [93.35945182085948]
グラフニューラルネットワーク(GNN)は、グラフ構造化データのモデリングにおいて強力であることが示されている。
生成事前学習によりGNNを初期化するためのGPT-GNNフレームワークを提案する。
GPT-GNNは、様々な下流タスクにおいて、事前トレーニングを最大9.1%行うことなく、最先端のGNNモデルを大幅に上回ることを示す。
論文 参考訳(メタデータ) (2020-06-27T20:12:33Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。