Predicting Relationship Labels and Individual Personality Traits from
Telecommunication History in Social Networks using Hawkes Processes
- URL: http://arxiv.org/abs/2009.02032v3
- Date: Wed, 25 Jan 2023 12:59:37 GMT
- Title: Predicting Relationship Labels and Individual Personality Traits from
Telecommunication History in Social Networks using Hawkes Processes
- Authors: Mateusz Nurek, Rados{\l}aw Michalski, Omar Lizardo, Marian-Andrei
Rizoiu
- Abstract summary: Mobile phones contain a wealth of private information, so we try to keep them secure.
We provide large-scale evidence that the psychological profiles of individuals and their relations with their peers can be predicted from seemingly anonymous communication traces.
- Score: 5.668126716715423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile phones contain a wealth of private information, so we try to keep them
secure. We provide large-scale evidence that the psychological profiles of
individuals and their relations with their peers can be predicted from
seemingly anonymous communication traces -- calling and texting logs that
service providers routinely collect. Based on two extensive longitudinal
studies containing more than 900 college students, we use point process
modeling to describe communication patterns. We automatically predict the peer
relationship type and temporal dynamics, and assess user personality based on
the modeling. For some personality traits, the results are comparable to the
gold-standard performances obtained from survey self-report data. Findings
illustrate how information usually residing outside the control of individuals
can be used to reconstruct sensitive information.
Related papers
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - Do We Trust What They Say or What They Do? A Multimodal User Embedding Provides Personalized Explanations [35.77028281332307]
We propose Contribution-Aware Multimodal User Embedding (CAMUE) for social networks.
We show that our approach can provide personalized explainable predictions, automatically mitigating the impact of unreliable information.
Our work paves the way for more explainable, reliable, and effective social media user embedding.
arXiv Detail & Related papers (2024-09-04T02:17:32Z) - Personality Analysis for Social Media Users using Arabic language and its Effect on Sentiment Analysis [1.2903829793534267]
This study, explores the correlation between the use of Arabic language on twitter, personality traits and its impact on sentiment analysis.
We indicated the personality traits of users based on the information extracted from their profile activities, and the content of their tweets.
Our findings demonstrated that personality affect sentiment in social media.
arXiv Detail & Related papers (2024-07-08T18:27:54Z) - Modeling User Preferences via Brain-Computer Interfacing [54.3727087164445]
We use Brain-Computer Interfacing technology to infer users' preferences, their attentional correlates towards visual content, and their associations with affective experience.
We link these to relevant applications, such as information retrieval, personalized steering of generative models, and crowdsourcing population estimates of affective experiences.
arXiv Detail & Related papers (2024-05-15T20:41:46Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Analyzing Wikipedia Membership Dataset and PredictingUnconnected Nodes
in the Signed Networks [0.666659730119789]
We examine how relationships can be predicted between two unconnected people in a social network by using area under Precison-Recall curve and ROC.
Modeling the social network as a signed graph, we compare Triadic model,Latent Information model and Sentiment model and use them to predict peer to peer interactions.
arXiv Detail & Related papers (2021-10-18T09:03:18Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z) - A Machine Learning Approach to Predicting Continuous Tie Strengths [0.4014524824655105]
Relationships between people constantly evolve, altering interpersonal behavior and defining social groups.
Relationships between nodes in social networks can be represented by a tie strength, often empirically assessed using surveys.
We propose a system that allows for the continuous approximation of relationships as they evolve over time.
arXiv Detail & Related papers (2021-01-23T05:01:05Z) - My tweets bring all the traits to the yard: Predicting personality and
relational traits in Online Social Networks [4.095574580512599]
This study aims to provide a prediction model for a holistic personality profiling in Online Social Networks (OSNs)
We first designed a feature engineering methodology that extracts a wide range of features from OSN accounts of users.
Then, we designed a machine learning model that predicts scores for the psychological traits of the users based on the extracted features.
arXiv Detail & Related papers (2020-09-22T20:30:56Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.