Personality Analysis for Social Media Users using Arabic language and its Effect on Sentiment Analysis
- URL: http://arxiv.org/abs/2407.06314v3
- Date: Mon, 22 Jul 2024 19:27:20 GMT
- Title: Personality Analysis for Social Media Users using Arabic language and its Effect on Sentiment Analysis
- Authors: Mokhaiber Dandash, Masoud Asadpour,
- Abstract summary: This study, explores the correlation between the use of Arabic language on twitter, personality traits and its impact on sentiment analysis.
We indicated the personality traits of users based on the information extracted from their profile activities, and the content of their tweets.
Our findings demonstrated that personality affect sentiment in social media.
- Score: 1.2903829793534267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media is heading towards more and more personalization, where individuals reveal their beliefs, interests, habits, and activities, simply offering glimpses into their personality traits. This study, explores the correlation between the use of Arabic language on twitter, personality traits and its impact on sentiment analysis. We indicated the personality traits of users based on the information extracted from their profile activities, and the content of their tweets. Our analysis incorporated linguistic features, profile statistics (including gender, age, bio, etc.), as well as additional features like emoticons. To obtain personality data, we crawled the timelines and profiles of users who took the 16personalities test in Arabic on 16personalities.com. Our dataset, "AraPers", comprised 3,250 users who shared their personality results on twitter. We implemented various machine learning techniques, to reveal personality traits and developed a dedicated model for this purpose, achieving a 74.86% accuracy rate with BERT, analysis of this dataset proved that linguistic features, profile features and derived model can be used to differentiate between different personality traits. Furthermore, our findings demonstrated that personality affect sentiment in social media. This research contributes to the ongoing efforts in developing robust understanding of the relation between human behaviour on social media and personality features for real-world applications, such as political discourse analysis, and public opinion tracking.
Related papers
- Revealing Personality Traits: A New Benchmark Dataset for Explainable Personality Recognition on Dialogues [63.936654900356004]
Personality recognition aims to identify the personality traits implied in user data such as dialogues and social media posts.
We propose a novel task named Explainable Personality Recognition, aiming to reveal the reasoning process as supporting evidence of the personality trait.
arXiv Detail & Related papers (2024-09-29T14:41:43Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - Identifying and Manipulating the Personality Traits of Language Models [9.213700601337383]
We investigate whether perceived personality in language models is exhibited consistently in their language generation.
We show that language models such as BERT and GPT2 can consistently identify and reflect personality markers in different contexts.
This behavior illustrates an ability to be manipulated in a highly predictable way, and frames them as tools for identifying personality traits and controlling personas in applications such as dialog systems.
arXiv Detail & Related papers (2022-12-20T14:24:11Z) - Exploring Personality and Online Social Engagement: An Investigation of
MBTI Users on Twitter [0.0]
We investigate 3848 profiles from Twitter with self-labeled Myers-Briggs personality traits (MBTI)
We leverage BERT, a state-of-the-art NLP architecture based on deep learning, to analyze various sources of text that hold most predictive power for our task.
We find that biographies, statuses, and liked tweets contain significant predictive power for all dimensions of the MBTI system.
arXiv Detail & Related papers (2021-09-14T02:26:30Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z) - My tweets bring all the traits to the yard: Predicting personality and
relational traits in Online Social Networks [4.095574580512599]
This study aims to provide a prediction model for a holistic personality profiling in Online Social Networks (OSNs)
We first designed a feature engineering methodology that extracts a wide range of features from OSN accounts of users.
Then, we designed a machine learning model that predicts scores for the psychological traits of the users based on the extracted features.
arXiv Detail & Related papers (2020-09-22T20:30:56Z) - Vyaktitv: A Multimodal Peer-to-Peer Hindi Conversations based Dataset
for Personality Assessment [50.15466026089435]
We present a novel peer-to-peer Hindi conversation dataset- Vyaktitv.
It consists of high-quality audio and video recordings of the participants, with Hinglish textual transcriptions for each conversation.
The dataset also contains a rich set of socio-demographic features, like income, cultural orientation, amongst several others, for all the participants.
arXiv Detail & Related papers (2020-08-31T17:44:28Z) - On Predicting Personal Values of Social Media Users using
Community-Specific Language Features and Personal Value Correlation [14.12186042953335]
This work focuses on analyzing Singapore users' personal values and developing effective models to predict their personal values using their Facebook data.
We incorporate the correlations among personal values into our proposed Stack Model consisting of a task-specific layer of base models and a cross-stitch layer model.
arXiv Detail & Related papers (2020-07-16T04:36:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.