KILT: a Benchmark for Knowledge Intensive Language Tasks
- URL: http://arxiv.org/abs/2009.02252v4
- Date: Thu, 27 May 2021 15:20:59 GMT
- Title: KILT: a Benchmark for Knowledge Intensive Language Tasks
- Authors: Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid
Yazdani, Nicola De Cao, James Thorne, Yacine Jernite, Vladimir Karpukhin,
Jean Maillard, Vassilis Plachouras, Tim Rockt\"aschel, Sebastian Riedel
- Abstract summary: We present a benchmark for knowledge-intensive language tasks (KILT)
All tasks in KILT are grounded in the same snapshot of Wikipedia.
We find that a shared dense vector index coupled with a seq2seq model is a strong baseline.
- Score: 102.33046195554886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Challenging problems such as open-domain question answering, fact checking,
slot filling and entity linking require access to large, external knowledge
sources. While some models do well on individual tasks, developing general
models is difficult as each task might require computationally expensive
indexing of custom knowledge sources, in addition to dedicated infrastructure.
To catalyze research on models that condition on specific information in large
textual resources, we present a benchmark for knowledge-intensive language
tasks (KILT). All tasks in KILT are grounded in the same snapshot of Wikipedia,
reducing engineering turnaround through the re-use of components, as well as
accelerating research into task-agnostic memory architectures. We test both
task-specific and general baselines, evaluating downstream performance in
addition to the ability of the models to provide provenance. We find that a
shared dense vector index coupled with a seq2seq model is a strong baseline,
outperforming more tailor-made approaches for fact checking, open-domain
question answering and dialogue, and yielding competitive results on entity
linking and slot filling, by generating disambiguated text. KILT data and code
are available at https://github.com/facebookresearch/KILT.
Related papers
- MATTER: Memory-Augmented Transformer Using Heterogeneous Knowledge Sources [12.783393023641505]
We introduce an efficient memory-augmented transformer called MATTER.
MATTER retrieves and reads from both unstructured sources (paragraphs) and semi-structured sources (QA pairs) in the form of fixed-length neural memories.
We demonstrate that our model outperforms existing efficient retrieval-augmented models on popular QA benchmarks in terms of both accuracy and speed.
arXiv Detail & Related papers (2024-06-07T06:35:37Z) - TANQ: An open domain dataset of table answered questions [15.323690523538572]
TANQ is the first open domain question answering dataset where the answers require building tables from information across multiple sources.
We release the full source attribution for every cell in the resulting table and benchmark state-of-the-art language models in open, oracle, and closed book setups.
Our best-performing baseline, GPT4 reaches an overall F1 score of 29.1, lagging behind human performance by 19.7 points.
arXiv Detail & Related papers (2024-05-13T14:07:20Z) - Automatic Question-Answer Generation for Long-Tail Knowledge [65.11554185687258]
We propose an automatic approach to generate specialized QA datasets for tail entities.
We conduct extensive experiments by employing pretrained LLMs on our newly generated long-tail QA datasets.
arXiv Detail & Related papers (2024-03-03T03:06:31Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Building Interpretable and Reliable Open Information Retriever for New
Domains Overnight [67.03842581848299]
Information retrieval is a critical component for many down-stream tasks such as open-domain question answering (QA)
We propose an information retrieval pipeline that uses entity/event linking model and query decomposition model to focus more accurately on different information units of the query.
We show that, while being more interpretable and reliable, our proposed pipeline significantly improves passage coverages and denotation accuracies across five IR and QA benchmarks.
arXiv Detail & Related papers (2023-08-09T07:47:17Z) - Long-Tailed Question Answering in an Open World [46.67715607552547]
We define Open Long-Tailed QA (OLTQA) as learning from long-tailed distributed data.
We propose an OLTQA model that encourages knowledge sharing between head, tail and unseen tasks.
On a large-scale OLTQA dataset, our model consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2023-05-11T04:28:58Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks [133.93803565077337]
retrieval-augmented generation models combine pre-trained parametric and non-parametric memory for language generation.
We show that RAG models generate more specific, diverse and factual language than a state-of-the-art parametric-only seq2seq baseline.
arXiv Detail & Related papers (2020-05-22T21:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.