MATTER: Memory-Augmented Transformer Using Heterogeneous Knowledge Sources
- URL: http://arxiv.org/abs/2406.04670v1
- Date: Fri, 7 Jun 2024 06:35:37 GMT
- Title: MATTER: Memory-Augmented Transformer Using Heterogeneous Knowledge Sources
- Authors: Dongkyu Lee, Chandana Satya Prakash, Jack FitzGerald, Jens Lehmann,
- Abstract summary: We introduce an efficient memory-augmented transformer called MATTER.
MATTER retrieves and reads from both unstructured sources (paragraphs) and semi-structured sources (QA pairs) in the form of fixed-length neural memories.
We demonstrate that our model outperforms existing efficient retrieval-augmented models on popular QA benchmarks in terms of both accuracy and speed.
- Score: 12.783393023641505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging external knowledge is crucial for achieving high performance in knowledge-intensive tasks, such as question answering. The retrieve-and-read approach is widely adopted for integrating external knowledge into a language model. However, this approach suffers from increased computational cost and latency due to the long context length, which grows proportionally with the number of retrieved knowledge. Furthermore, existing retrieval-augmented models typically retrieve information from a single type of knowledge source, limiting their scalability to diverse knowledge sources with varying structures. In this work, we introduce an efficient memory-augmented transformer called MATTER, designed to retrieve relevant knowledge from multiple heterogeneous knowledge sources. Specifically, our model retrieves and reads from both unstructured sources (paragraphs) and semi-structured sources (QA pairs) in the form of fixed-length neural memories. We demonstrate that our model outperforms existing efficient retrieval-augmented models on popular QA benchmarks in terms of both accuracy and speed. Furthermore, MATTER achieves competitive results compared to conventional read-and-retrieve models while having 100x throughput during inference.
Related papers
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - Semi-Structured Chain-of-Thought: Integrating Multiple Sources of Knowledge for Improved Language Model Reasoning [10.839645156881573]
We introduce a novel semi-structured prompting approach that seamlessly integrates the model's parametric memory with unstructured knowledge from text documents and structured knowledge from knowledge graphs.
Experimental results on open-domain multi-hop question answering datasets demonstrate that our prompting method significantly surpasses existing techniques.
arXiv Detail & Related papers (2023-11-14T19:53:53Z) - Enhancing Retrieval-Augmented Large Language Models with Iterative
Retrieval-Generation Synergy [164.83371924650294]
We show that strong performance can be achieved by a method we call Iter-RetGen, which synergizes retrieval and generation in an iterative manner.
A model output shows what might be needed to finish a task, and thus provides an informative context for retrieving more relevant knowledge.
Iter-RetGen processes all retrieved knowledge as a whole and largely preserves the flexibility in generation without structural constraints.
arXiv Detail & Related papers (2023-05-24T16:17:36Z) - The KITMUS Test: Evaluating Knowledge Integration from Multiple Sources
in Natural Language Understanding Systems [87.3207729953778]
We evaluate state-of-the-art coreference resolution models on our dataset.
Several models struggle to reason on-the-fly over knowledge observed both at pretrain time and at inference time.
Still, even the best performing models seem to have difficulties with reliably integrating knowledge presented only at inference time.
arXiv Detail & Related papers (2022-12-15T23:26:54Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
We argue that storing large amounts of knowledge in the model parameters is sub-optimal given the ever-growing amounts of knowledge and resource requirements.
We present LM-CORE -- a general framework to achieve this -- that allows textitdecoupling of the language model training from the external knowledge source.
Experimental results show that LM-CORE, having access to external knowledge, achieves significant and robust outperformance over state-of-the-art knowledge-enhanced language models on knowledge probing tasks.
arXiv Detail & Related papers (2022-08-12T18:59:37Z) - Kformer: Knowledge Injection in Transformer Feed-Forward Layers [107.71576133833148]
We propose a novel knowledge fusion model, namely Kformer, which incorporates external knowledge through the feed-forward layer in Transformer.
We empirically find that simply injecting knowledge into FFN can facilitate the pre-trained language model's ability and facilitate current knowledge fusion methods.
arXiv Detail & Related papers (2022-01-15T03:00:27Z) - KAT: A Knowledge Augmented Transformer for Vision-and-Language [56.716531169609915]
We propose a novel model - Knowledge Augmented Transformer (KAT) - which achieves a strong state-of-the-art result on the open-domain multimodal task of OK-VQA.
Our approach integrates implicit and explicit knowledge in an end to end encoder-decoder architecture, while still jointly reasoning over both knowledge sources during answer generation.
An additional benefit of explicit knowledge integration is seen in improved interpretability of model predictions in our analysis.
arXiv Detail & Related papers (2021-12-16T04:37:10Z) - KILT: a Benchmark for Knowledge Intensive Language Tasks [102.33046195554886]
We present a benchmark for knowledge-intensive language tasks (KILT)
All tasks in KILT are grounded in the same snapshot of Wikipedia.
We find that a shared dense vector index coupled with a seq2seq model is a strong baseline.
arXiv Detail & Related papers (2020-09-04T15:32:19Z) - REALM: Retrieval-Augmented Language Model Pre-Training [37.3178586179607]
We augment language model pre-training with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus such as Wikipedia.
For the first time, we show how to pre-train such a knowledge retriever in an unsupervised manner.
We demonstrate the effectiveness of Retrieval-Augmented Language Model pre-training (REALM) by fine-tuning on the challenging task of Open-domain Question Answering (Open-QA)
arXiv Detail & Related papers (2020-02-10T18:40:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.