A Deep Learning Approach to Tongue Detection for Pediatric Population
- URL: http://arxiv.org/abs/2009.02397v3
- Date: Mon, 28 Sep 2020 19:43:29 GMT
- Title: A Deep Learning Approach to Tongue Detection for Pediatric Population
- Authors: Javad Rahimipour Anaraki, Silvia Orlandi, Tom Chau
- Abstract summary: Children with severe disabilities and complex communication needs face limitations in the usage of access technology (AT) devices.
Previous studies have shown the robustness of tongue detection algorithms on adult participants.
In this study, a network architecture for tongue-out gesture recognition was implemented and evaluated on videos recorded in a naturalistic setting.
- Score: 1.5484595752241122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Children with severe disabilities and complex communication needs face
limitations in the usage of access technology (AT) devices. Conventional ATs
(e.g., mechanical switches) can be insufficient for nonverbal children and
those with limited voluntary motion control. Automatic techniques for the
detection of tongue gestures represent a promising pathway. Previous studies
have shown the robustness of tongue detection algorithms on adult participants,
but further research is needed to use these methods with children. In this
study, a network architecture for tongue-out gesture recognition was
implemented and evaluated on videos recorded in a naturalistic setting when
children were playing a video-game. A cascade object detector algorithm was
used to detect the participants' faces, and an automated classification scheme
for tongue gesture detection was developed using a convolutional neural network
(CNN). In evaluation experiments conducted, the network was trained using
adults and children's images. The network classification accuracy was evaluated
using leave-one-subject-out cross-validation. Preliminary classification
results obtained from the analysis of videos of five typically developing
children showed an accuracy of up to 99% in predicting tongue-out gestures.
Moreover, we demonstrated that using only children data for training the
classifier yielded better performance than adult's one supporting the need for
pediatric tongue gesture datasets.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Detecting sexually explicit content in the context of the child sexual abuse materials (CSAM): end-to-end classifiers and region-based networks [0.0]
Child sexual abuse materials (CSAM) pose a significant threat to the safety and well-being of children worldwide.
This study presents methods for classifying sexually explicit content, which plays a crucial role in the automated CSAM detection system.
arXiv Detail & Related papers (2024-06-20T09:21:08Z) - Neural Lineage [56.34149480207817]
We introduce a novel task known as neural lineage detection, aiming at discovering lineage relationships between parent and child models.
For practical convenience, we introduce a learning-free approach, which integrates an approximation of the finetuning process into the neural network representation similarity metrics.
For the pursuit of accuracy, we introduce a learning-based lineage detector comprising encoders and a transformer detector.
arXiv Detail & Related papers (2024-06-17T01:11:53Z) - Detection of developmental language disorder in Cypriot Greek children
using a neural network algorithm [0.0]
The study aims to develop an automated method for the identification of developmental language disorder (DLD) using artificial intelligence.
This protocol is applied for the first time in a Cypriot Greek child population with DLD.
The performance of the model was evaluated using metrics such as accuracy, precision, recall, F1 score, and ROC/AUC curve.
arXiv Detail & Related papers (2023-11-25T15:23:46Z) - Exploiting the Brain's Network Structure for Automatic Identification of
ADHD Subjects [70.37277191524755]
We show that the brain can be modeled as a functional network, and certain properties of the networks differ in ADHD subjects from control subjects.
We train our classifier with 776 subjects and test on 171 subjects provided by The Neuro Bureau for the ADHD-200 challenge.
arXiv Detail & Related papers (2023-06-15T16:22:57Z) - BabyNet: A Lightweight Network for Infant Reaching Action Recognition in
Unconstrained Environments to Support Future Pediatric Rehabilitation
Applications [5.4771139749266435]
Action recognition is an important component to improve autonomy of physical rehabilitation devices, such as wearable robotic exoskeletons.
In this paper, we introduce BabyNet, a light-weight (in terms of trainable parameters) network structure to recognize infant reaching action from off-body stationary cameras.
arXiv Detail & Related papers (2022-08-09T07:38:36Z) - Activity Recognition with Moving Cameras and Few Training Examples:
Applications for Detection of Autism-Related Headbanging [1.603589863010401]
Activity recognition computer vision algorithms can be used to detect the presence of autism-related behaviors.
We document the advantages and limitations of current feature representation techniques for activity recognition when applied to head banging detection.
We create a computer vision classifier for detecting head banging in home videos using a time-distributed convolutional neural network.
arXiv Detail & Related papers (2021-01-10T05:37:05Z) - Towards human-level performance on automatic pose estimation of infant
spontaneous movements [2.7086496937827005]
Four types of convolutional neural networks were trained and evaluated on a novel infant pose dataset.
The best performing neural network had a similar localization error to the inter-rater spread of human expert annotations.
Overall, the results of our study show that pose estimation of infant spontaneous movements has a great potential to support research initiatives on early detection of developmental disorders in children with perinatal brain injuries.
arXiv Detail & Related papers (2020-10-12T18:17:47Z) - A robot that counts like a child: a developmental model of counting and
pointing [69.26619423111092]
A novel neuro-robotics model capable of counting real items is introduced.
The model allows us to investigate the interaction between embodiment and numerical cognition.
The trained model is able to count a set of items and at the same time points to them.
arXiv Detail & Related papers (2020-08-05T21:06:27Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too.
This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neuro-robotics.
arXiv Detail & Related papers (2020-03-23T14:55:00Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.