Towards human-level performance on automatic pose estimation of infant
spontaneous movements
- URL: http://arxiv.org/abs/2010.05949v5
- Date: Thu, 16 Dec 2021 16:09:10 GMT
- Title: Towards human-level performance on automatic pose estimation of infant
spontaneous movements
- Authors: Daniel Groos, Lars Adde, Ragnhild St{\o}en, Heri Ramampiaro, Espen A.
F. Ihlen
- Abstract summary: Four types of convolutional neural networks were trained and evaluated on a novel infant pose dataset.
The best performing neural network had a similar localization error to the inter-rater spread of human expert annotations.
Overall, the results of our study show that pose estimation of infant spontaneous movements has a great potential to support research initiatives on early detection of developmental disorders in children with perinatal brain injuries.
- Score: 2.7086496937827005
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Assessment of spontaneous movements can predict the long-term developmental
disorders in high-risk infants. In order to develop algorithms for automated
prediction of later disorders, highly precise localization of segments and
joints by infant pose estimation is required. Four types of convolutional
neural networks were trained and evaluated on a novel infant pose dataset,
covering the large variation in 1 424 videos from a clinical international
community. The localization performance of the networks was evaluated as the
deviation between the estimated keypoint positions and human expert
annotations. The computational efficiency was also assessed to determine the
feasibility of the neural networks in clinical practice. The best performing
neural network had a similar localization error to the inter-rater spread of
human expert annotations, while still operating efficiently. Overall, the
results of our study show that pose estimation of infant spontaneous movements
has a great potential to support research initiatives on early detection of
developmental disorders in children with perinatal brain injuries by
quantifying infant movements from video recordings with human-level
performance.
Related papers
- Modeling 3D Infant Kinetics Using Adaptive Graph Convolutional Networks [2.2279946664123664]
Spontaneous motor activity, orkinetics', is shown to provide a powerful surrogate measure of upcoming neurodevelopment.
Here, we follow an alternative approach, predicting infants' maturation based on data-driven evaluation of individual motor patterns.
arXiv Detail & Related papers (2024-02-22T09:34:48Z) - Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Detection of developmental language disorder in Cypriot Greek children
using a neural network algorithm [0.0]
The study aims to develop an automated method for the identification of developmental language disorder (DLD) using artificial intelligence.
This protocol is applied for the first time in a Cypriot Greek child population with DLD.
The performance of the model was evaluated using metrics such as accuracy, precision, recall, F1 score, and ROC/AUC curve.
arXiv Detail & Related papers (2023-11-25T15:23:46Z) - Dynamic Gaussian Splatting from Markerless Motion Capture can
Reconstruct Infants Movements [2.44755919161855]
This work paves the way for advanced movement analysis tools that can be applied to diverse clinical populations.
We explored the application of dynamic Gaussian splatting to sparse markerless motion capture data.
Our results demonstrate the potential of this method in rendering novel views of scenes and tracking infant movements.
arXiv Detail & Related papers (2023-10-30T11:09:39Z) - Towards early prediction of neurodevelopmental disorders: Computational
model for Face Touch and Self-adaptors in Infants [0.0]
evaluating a baby's movements is key to understanding possible risks of developmental disorders in their growth.
Previous research in psychology has shown that measuring specific movements or gestures such as face touches in babies is essential to analyse how babies understand themselves and their context.
This research proposes the first automatic approach that detects face touches from video recordings by tracking infants' movements and gestures.
arXiv Detail & Related papers (2023-01-07T18:08:43Z) - NeuroExplainer: Fine-Grained Attention Decoding to Uncover Cortical
Development Patterns of Preterm Infants [73.85768093666582]
We propose an explainable geometric deep network dubbed NeuroExplainer.
NeuroExplainer is used to uncover altered infant cortical development patterns associated with preterm birth.
arXiv Detail & Related papers (2023-01-01T12:48:12Z) - Learning Personal Representations from fMRIby Predicting Neurofeedback
Performance [52.77024349608834]
We present a deep neural network method for learning a personal representation for individuals performing a self neuromodulation task, guided by functional MRI (fMRI)
The representation is learned by a self-supervised recurrent neural network, that predicts the Amygdala activity in the next fMRI frame given recent fMRI frames and is conditioned on the learned individual representation.
arXiv Detail & Related papers (2021-12-06T10:16:54Z) - Voxel-level Importance Maps for Interpretable Brain Age Estimation [70.5330922395729]
We focus on the task of brain age regression from 3D brain Magnetic Resonance (MR) images using a Convolutional Neural Network, termed prediction model.
We implement a noise model which aims to add as much noise as possible to the input without harming the performance of the prediction model.
We test our method on 13,750 3D brain MR images from the UK Biobank, and our findings are consistent with the existing neuropathology literature.
arXiv Detail & Related papers (2021-08-11T18:08:09Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z) - Preterm infants' pose estimation with spatio-temporal features [7.054093620465401]
This paper introduces the use of preterm-temporal features for limb detection and tracking.
It is the first study to use depth videos acquired in the actual clinical practice for limb-pose estimation.
arXiv Detail & Related papers (2020-05-08T09:51:22Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too.
This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neuro-robotics.
arXiv Detail & Related papers (2020-03-23T14:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.