A Hierarchical Architecture for Human-Robot Cooperation Processes
- URL: http://arxiv.org/abs/2009.02807v1
- Date: Sun, 6 Sep 2020 19:55:32 GMT
- Title: A Hierarchical Architecture for Human-Robot Cooperation Processes
- Authors: Kourosh Darvish, Enrico Simetti, Fulvio Mastrogiovanni, Giuseppe
Casalino
- Abstract summary: We propose a hierarchical human-robot cooperation architecture called FlexHRC+.
It provides collaborative robots with an extended degree of autonomy when supporting human operators in high-variability shop-floor tasks.
- Score: 3.9514394345533828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we propose FlexHRC+, a hierarchical human-robot cooperation
architecture designed to provide collaborative robots with an extended degree
of autonomy when supporting human operators in high-variability shop-floor
tasks. The architecture encompasses three levels, namely for perception,
representation, and action. Building up on previous work, here we focus on (i)
an in-the-loop decision making process for the operations of collaborative
robots coping with the variability of actions carried out by human operators,
and (ii) the representation level, integrating a hierarchical AND/OR graph
whose online behaviour is formally specified using First Order Logic. The
architecture is accompanied by experiments including collaborative furniture
assembly and object positioning tasks.
Related papers
- HARMONIC: A Framework for Explanatory Cognitive Robots [0.0]
We present HARMONIC, a framework for implementing cognitive robots.
The framework supports interoperability between a strategic (cognitive) layer for high-level decision-making and a tactical (robot) layer for low-level control and execution.
arXiv Detail & Related papers (2024-09-26T16:42:13Z) - COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models [49.24666980374751]
COHERENT is a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems.
A Proposal-Execution-Feedback-Adjustment mechanism is designed to decompose and assign actions for individual robots.
The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency.
arXiv Detail & Related papers (2024-09-23T15:53:41Z) - Towards Human-Centered Construction Robotics: A Reinforcement Learning-Driven Companion Robot for Contextually Assisting Carpentry Workers [11.843554918145983]
This paper introduces a human-centered approach with a "work companion rover" designed to assist construction workers within their existing practices.
We conduct an in-depth study on deploying a robotic system in carpentry formwork, showcasing a prototype that emphasizes mobility, safety, and comfortable worker-robot collaboration.
arXiv Detail & Related papers (2024-03-27T23:55:02Z) - ThinkBot: Embodied Instruction Following with Thought Chain Reasoning [66.09880459084901]
Embodied Instruction Following (EIF) requires agents to complete human instruction by interacting objects in complicated surrounding environments.
We propose ThinkBot that reasons the thought chain in human instruction to recover the missing action descriptions.
Our ThinkBot outperforms the state-of-the-art EIF methods by a sizable margin in both success rate and execution efficiency.
arXiv Detail & Related papers (2023-12-12T08:30:09Z) - Unified Human-Scene Interaction via Prompted Chain-of-Contacts [61.87652569413429]
Human-Scene Interaction (HSI) is a vital component of fields like embodied AI and virtual reality.
This paper presents a unified HSI framework, UniHSI, which supports unified control of diverse interactions through language commands.
arXiv Detail & Related papers (2023-09-14T17:59:49Z) - A Unified Architecture for Dynamic Role Allocation and Collaborative
Task Planning in Mixed Human-Robot Teams [0.0]
We present a novel architecture for dynamic role allocation and collaborative task planning in a mixed human-robot team of arbitrary size.
The architecture capitalizes on a centralized reactive and modular task-agnostic planning method based on Behavior Trees (BTs)
Different metrics used as MILP cost allow the architecture to favor various aspects of the collaboration.
arXiv Detail & Related papers (2023-01-19T12:30:56Z) - A ROS Architecture for Personalised HRI with a Bartender Social Robot [61.843727637976045]
BRILLO project has the overall goal of creating an autonomous robotic bartender that can interact with customers while accomplishing its bartending tasks.
We present the developed three-layers ROS architecture integrating a perception layer managing the processing of different social signals, a decision-making layer for handling multi-party interactions, and an execution layer controlling the behaviour of a complex robot composed of arms and a face.
arXiv Detail & Related papers (2022-03-13T11:33:06Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Deployment and Evaluation of a Flexible Human-Robot Collaboration Model
Based on AND/OR Graphs in a Manufacturing Environment [2.3848738964230023]
A major bottleneck to effectively deploy collaborative robots to manufacturing industries is developing task planning algorithms.
A pick-and-place palletization task, which requires the collaboration between humans and robots, is investigated.
The results of this study demonstrate how human-robot collaboration models like the one we propose can leverage the flexibility and the comfort of operators in the workplace.
arXiv Detail & Related papers (2020-07-13T22:05:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.